
handbook

Enterprise Java
Developer's

Petyo Dimitrov

October, 2017

Survival guide2

AGENDA

About me

Steps for survival

Q&A

Survival guide3

THE ENTERPRISE JAVA WILDERNESS

Survival guide4

STEP 1: COME PREPARED

What do I
need to know

to be an
Enterprise

Java
developer?

Survival guide5

KNOWLEDGE (1)

Solid understanding of core Java & some specifics:
• garbage collection strategies
• class loading specifics
• debugging (thread & heap dumps)

Some experience with databases and middleware

Survival guide6

KNOWLEDGE (2)

Knowledge in OOP concepts and design patterns
• Singleton, Dependency Injection, Factory, MVC …

Core Java EE specs like Servlets, JPA & Components

Basic Linux command line skills

Survival guide7

KNOWLEDGE IMPROVEMENT

Write code

Collaborate with experienced people and learn from them

Join an open-source project

Code reviews are a great way to learn

Survival guide8

STEP 2: BRING GEAR

What tools
should I be

experienced
in?

Survival guide9

IDES & TOOLS

Survival guide10

BE LAZY & AUTOMATE

Builds & Tests (via Maven, Jenkins, etc.)

Administrative tasks (via Scripts, custom tools)

Environment setup (Vagrant, Docker)

Survival guide11

APPLICATION GENERATION

Survival guide12

STEP 3: GET ORIENTED

Which
technology

stack
should I
choose?

Survival guide13

SPRING VS JAVA EE

Survival guide14

CLIENT REQUIREMENTS

Survival guide15

KNOWLEDGE REQUIREMENTS

Survival guide16

PROJECT REQUIREMENTS

Survival guide17

POPULAR JAVA EE SPECIFICATIONS

ZeroTurnaround's survey of ~1700 developers

Survival guide18

AND NOW WHAT?

Survival guide19

STEP 4: BUILD SHELTER

How do I
setup the
project?

Survival guide20

BASIC SETUP (1)

VCS:

Build:

CI:

Survival guide21

BASIC SETUP (2)

Survival guide22

ADVANCED SETUP

1. Static code analysis 🡪 Sonar / IDE-based
2. DB schema management 🡪 Flyway / Liquibase
3. In-memory DB for development
4. Easy to setup local environment
5. Stable staging environment
6. Continuous Delivery

Survival guide23

UNIT TESTING!

Via:
• JUnit & Mockito / Powermock / EasyMock
• Groovy & Spock

Caveats:
• one-off short-term projects
• tests treated as second class code

Survival guide24

UNIT TESTING ISSUES – USELESS TESTS

def "invite calls the service"() {
 setup:
 def form = Mock(SomeInputForm)
 def actor = Mock(Actor)

 when:
 underTest.invite(actor, form)

 then:
 1 * service.invite(actor, form)
}

Survival guide25

UNIT TESTING ISSUES – BRITTLE TESTS

def "smart test name"() {
 setup:
 def customer = PETYO
 def device = SMART_DEVICE
 …
 when:
 def result = underTest.execute(taskData)

 then:
 1 * deviceService.findByCustomer(customer) >> serviceResultA
 0 * anotherService._

 result == expected result
}

Survival guide26

STEP 5: FIND WATER

How do I
implement

the project?

Survival guide27

APPLICATION DESIGN

Consider modules & package structure

Review component interfaces

Beware of excessive Dependency Injection

Principles of Domain Driven Design

Survival guide28

SHOULD I USE AN ORM?

relational

new

object centric

CRUD queries

nosql

legacy

data centric

reporting queries

Survival guide29

WHAT PROBLEMS CAN I EXPECT?

"Magic" powers i.e. hidden learning curve

Reduced control over DB

Loss of DB specific capabilities

Difficulty fetching necessary data

Survival guide30

HOW TO DESIGN REST API-S?

• Follow the REST principles
& look at the APIs of large companies

• Use proper HTTP verbs (GET, PUT, POST, PATCH…)
• GET /movie/1/booking

• Use proper HTTP status codes
• 418 I‘m a teapot

Survival guide31

HOW TO DESIGN REST API-S? (2)

• Medium grained resources
• up to two levels of nesting

• Security:
• HTTPS
• OAuth2
• BasicAuth

Survival guide32

HOW TO DESIGN REST API-S? (3)

• Proper URLs using plural nouns
• GET /movies vs GET /getAllMovies

• Spinal-case in URLs and camelCase / snake_case
for parameters
• http://www.penisland.net/
• GET /order-item/1?orderNumber=2

Survival guide33

HOW TO DESIGN REST API-S? (4)

• Consider versioning early on:
• only major version
• aim to have no more than 2 versions in parallel
• /v1/movies, /v2/movies

• Filters & sorting via URL parameters
• ?sort=rating,budget&director=nolan

Survival guide34

HOW TO DESIGN REST API-S? (5)

• I18n of data:
• via Accept-Language: bg_BG

• Handling of operations (i.e. non-resources)
• POST /email/12/send
• consider JSON-RPC

Survival guide35

STEP 6: FIND FOOD

What about
performance?

Survival guide36

WHAT PROBLEMS SHOULD I EXPECT?

• Infrastructure issues (available resources, unreliability, latency)

• External system communication (synchronous calls, no timeouts,

faulty integrations)

• Lack of middleware tuning (thread & connection pools, clusters)

• Garbage collection (limits, strategies)

• Bugs (synchronization issues, memory leaks)

Survival guide37

HOW TO IMPROVE PERSISTENCE?

1. Monitor query performance
2. Review native SQL of sensitive queries

• mark/optimize slow queries
3. Use caching offered by ORM
4. Beware of many-to-many relations & fetch types
5. Run updates/deletes in bulk (beware of cascading)
6. Paging & query projection
7. Move logic to DB

Survival guide38

HOW TO IMPROVE FRONT END?

1. Track time for processing each REST request

2. Use gzip

3. Partial request & responses (?fields + HTTP PATCH)

4. Cache friendly results (etag, last-modified)

5. Paging

Survival guide39

STEP 7: STAY IN ONE PLACE VS SCOUT THE AREA

Survival guide40

QUESTIONS?

Survival guide41

THANK YOU

petyo.dimitrov@musala.com

