
Horacio Gonzalez
2023-06-05 - Madrid

OVHcloud
Kubernetes Initiation
Tech Lab

Who are we?
Introducing myself and
introducing OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard Lost in Brittany

Flutter

OVHcloud

30 Data Centers
in 12 locations

34 Points of Presence
on a 20 TBPS Bandwidth Network

2200 Employees
worldwide

115K Private Cloud
VMS running

380K Physical Servers
running in our data centers

1 Million+ Servers
produced since 1999

300K Public Cloud
instances running

1.5 Million Customers
across 132 countries

1.5 Billion Euros Invested
since 2016

20+ Years in Business
Disrupting since 1999

P.U.E. 1.09
Energy efficiency indicator

3.8 Million Websites
hosting

Web Cloud & Telcom

Private Cloud

Public Cloud

Storage

Network & Security

Why do we need Kubernetes?
Taming the complexity of operating containers

From bare metal to containers

From bare metal to containers

From bare metal to containers

Dockerfiles, images and containers

Containers are easy…

For developers

Less simple if you must operate them

Like in a production context

And what about microservices?

Are you sure you want to operate them by hand?

And what about microservices?

Are you sure you want to operate them by hand?

Kubernetes: a full orchestrator

Not the only orchestrator

But the most popular one…

Kubernetes cluster: masters and
nodes

Kubernetes cluster: more details

Desired State Management

Declarative infrastructure

Desired State Management

Let's deploy an application

Demo: Hello Kubernetes World

https://docs.ovh.com/gb/en/kubernetes/deploying-hello-world/

Needed tools: kubectl

https://kubernetes.io/docs/tasks/tools/

Putting Kubernetes in production
A journey not for the faint of heart

Kubernetes can be wonderful

For both developers and devops

The journey from dev to production

It's a complex technology

Lots of abstraction layers

Kubernetes networking is complex...

The storage dilemma

The ETCD vulnerability

Kubernetes is insecure by design*

It's a feature, not a bug.
Up to K8s admin to secure it according to needs

Not everybody has the same security
needs

Kubernetes allows to enforce
security practices as needed

Always keep up to date

Both Kubernetes and plugins

And remember,
even the best can get hacked

Remain attentive, don't get too confident

A managed Kubernetes
Because your company job is to use Kubernetes,

not to operate it!

Kubernetes is powerful

It can make Developers' and
DevOps' lives easier

But there is a price: operating it

Lot of things to think about

We have seen some of them

Different roles

Each role asks for very different
knowledge and skill sets

Operating a Kubernetes cluster is
hard

But we have a good news...

Most companies don't need to do it!

As they don't build and rack
their own servers!

If you don't need to build it,
choose a certified managed solution

You get the cluster, the operator
get the problems

Demo: A complete app - Wordpress

https://docs.ovh.com/gb/en/kubernetes/installing-wordpress/

Needed tools: helm

https://helm.sh/

Helm: a package manager for K8s

Wordpress is easy…

Two pods and a persistent volume

Yet is a complete app

Specially when deployed in production context

Namespaces
Logical isolation

Namespaces

Initial namespaces

Working with namespaces
$ kubectl create namespace my-namespace
namespace/my-namespace created

$ kubectl get namespaces
NAME STATUS AGE
default Active 45d
kube-node-lease Active 45d
kube-public Active 45d
kube-system Active 45d
my-namespace Active 7s

$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-kube-controllers-6b5885747b-m79ng 1/1 Running 0 6m58s
kube-system canal-22dj9 2/2 Running 0 7m
kube-system canal-4l4mv 2/2 Running 0 6m39s
kube-system canal-6rdxv 2/2 Running 0 7m19s
kube-system coredns-9f744c589-64spf 1/1 Running 0 42s
kube-system coredns-9f744c589-tl26z 1/1 Running 0 6m25s
[...]

Working with namespaces
$ kubectl apply -f hello.yml -n my-namespace
service/hello-world-service created
deployment.apps/hello-world-deployment created

$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-kube-controllers-6b5885747b-m79ng 1/1 Running 0 6m58s
kube-system canal-22dj9 2/2 Running 0 7m
kube-system canal-4l4mv 2/2 Running 0 6m39s
kube-system canal-6rdxv 2/2 Running 0 7m19s
kube-system coredns-9f744c589-64spf 1/1 Running 0 42s
kube-system coredns-9f744c589-tl26z 1/1 Running 0 6m25s
[...]
kube-system wormhole-vx6sn 1/1 Running 0 9m53s
my-namespace hello-world-deployment-bc4fd6b9-5mtk4 1/1 Running 0 37s

$ kubectl delete namespace my-namespace
namespace "my-namespace" deleted

Executing commands
kubectl exec

Pods are black boxes

How can we debug them?

Interactively execute commands

Execute commands in a container inside a pod

$ kubectl exec hello-world-deployment-bc4fd6b9-5sgls -c hello-world -it -- sh
/ # ls
bin dev etc home lib mnt proc root run sbin srv sys tmp usr var
/ #

Persistent Volumes
How to store persistent data in K8s

Local storage is a bad idea

Persistent Volumes

The storage dilemma

Resource management
Request and limits

Resource management

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: images.my-company.example/app
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

What if a pod uses too many resources?

CPU is compressible, memory is incompressible

Resource quota

Limit the total sum of compute resources
that can be requested in a given namespace

kind: ResourceQuota

metadata:

 name: compute-resources

spec:

 hard:

 requests.cpu: "1"

 requests.memory: 1Gi

 limits.cpu: "2"

 limits.memory: 2Gi

 requests.nvidia.com/gpu: 4

Limit range

Default, minimum and maximum resources usage
per pod in a namespace

apiVersion: v1
kind: LimitRange
metadata:
name: cpu-resource-constraint
spec:
limits:
- default: # this section defines default limits
 cpu: 500m
 defaultRequest: # this section defines default
requests
 cpu: 500m
 max: # max and min define the limit range
 cpu: "1"
 min:
 cpu: 100m
 type: Container

Verifying resource usage
% kubectl top pods
NAME CPU(cores) MEMORY(bytes)
hello-world-deployment-bc4fd6b9-dgspd 3m 2Mi
hello-world-deployment-bc4fd6b9-f85mf 3m 2Mi
hello-world-deployment-bc4fd6b9-hh7xs 4m 2Mi
hello-world-deployment-bc4fd6b9-lz494 5m 2Mi

% kubectl top pods --containers
POD NAME CPU(cores) MEMORY(bytes)
hello-world-deployment-bc4fd6b9-dgspd hello-world 0m 2Mi
hello-world-deployment-bc4fd6b9-f85mf hello-world 1m 2Mi
hello-world-deployment-bc4fd6b9-hh7xs hello-world 1m 2Mi
hello-world-deployment-bc4fd6b9-lz494 hello-world 0m 2Mi

% kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes)
MEMORY%
nodepool-ce18c6cd-1291-4a6e-83-node-5c283f 110m 5% 1214Mi 23%
nodepool-ce18c6cd-1291-4a6e-83-node-85b011 104m 5% 1576Mi 30%
nodepool-ce18c6cd-1291-4a6e-83-node-c3cfcf 121m 6% 1142Mi 22%

Health probes
Telling Kubernetes that the pod is alive and healthy

Liveness probe
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: registry.k8s.io/busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -f /tmp/healthy; sleep 600
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

Readiness probe
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: registry.k8s.io/busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -f /tmp/healthy; sleep 600
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5

Startup probe
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: registry.k8s.io/busybox
 livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 initialDelaySeconds: 5
 periodSeconds: 5
 startupProbe:
 exec:
 command:
 - cat
 - /tmp/healthy
 periodSeconds: 5
 failureThreshold: 24

Defining configuration
Config maps & secrets

Config files are a bad practice

Config maps

Storing configuration for other objects to use

Creating a Config Map
Create a new configmap named my-config with keys for each file in folder bar
$ kubectl create configmap my-config-1 --from-file=./config/bar
configmap/my-config created

Create a new configmap named my-config with specified keys instead of names on disk
$ kubectl create configmap my-config-2 --from-file=ssh-privatekey=~/.ssh/id_rsa
--from-file=ssh-publickey=~/.ssh/id_rsa.pub
configmap/my-config created

Create a new configMap named my-config with key1=config1 and key2=config2
$ kubectl create configmap my-config-3 --from-literal=key1=config1 --from-literal=key2=config2
configmap/my-config created

Describing a Config Map

apiVersion: v1
kind: ConfigMap
metadata:
 name: game-demo
data:
 # property-like keys; each key maps to a simple value
 player_initial_lives: "3"
 ui_properties_file_name: "user-interface.properties"

 # file-like keys
 game.properties: |
 enemy.types=aliens,monsters
 player.maximum-lives=5
 user-interface.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true

Using a Config Map in a Pod

Using a Config Map in a Pod
apiVersion: v1
kind: Pod
metadata:
 name: configmap-demo-pod
spec:
 containers:
 - name: demo
 image: alpine
 command: ["sleep", "3600"]
 env:
 # Define the environment variable
 - name: PLAYER_INITIAL_LIVES # Notice that the case is different here
 # from the key name in the ConfigMap.
 valueFrom:
 configMapKeyRef:
 name: game-demo # The ConfigMap this value comes from.
 key: player_initial_lives # The key to fetch.
 - name: UI_PROPERTIES_FILE_NAME
 valueFrom:
 configMapKeyRef:
 name: game-demo
 key: ui_properties_file_name

Using a Config Map in a Pod
apiVersion: v1
kind: Pod
metadata:
 name: configmap-demo-pod
spec:
 containers:
 - name: demo
 image: alpine
 command: ["sleep", "3600"]
 volumeMounts:
 - name: config
 mountPath: "/config"
 readOnly: true
 volumes:
 # You set volumes at the Pod level, then mount them into containers inside that Pod
 - name: config
 configMap:
 # Provide the name of the ConfigMap you want to mount.
 name: game-demo
 # An array of keys from the ConfigMap to create as files
 items:
 - key: "game.properties"
 path: "game.properties"
 - key: "user-interface.properties"
 path: "user-interface.properties"

Kubernetes secrets

Storing sensitive information inside the cluster
Encoded in Base64, decoded when attached to a pod

A warning on Kubernetes Secrets

No full encryption
All YAMLs and base64

Creating a Secret
Create a new Secret named db-user-pass with username=admin and password='S!B*d$zDsb='
$ kubectl create secret generic db-user-pass \
 --from-literal=username=admin \
 --from-literal=password='S!B*d$zDsb='

Or store the credentials in files:
$ echo -n 'admin' > ./username.txt
$ echo -n 'S!B*d$zDsb=' > ./password.txt

And pass the file paths in the kubectl command:
$ kubectl create secret generic db-user-pass \
 --from-file=username=./username.txt \
 --from-file=password=./password.txt

Verifying a Secret
Verify the Secret
$ kubectl get secrets
NAME TYPE DATA AGE
db-user-pass Opaque 2 3m34s

$ kubectl describe secret db-user-pass
Name: db-user-pass
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
password: 12 bytes
username: 5 bytes

Decoding a Secret
View the contents of the Secret you created:
 $ kubectl get secret db-user-pass -o jsonpath='{.data}'
{"password":"UyFCXCpkJHpEc2I9","username":"YWRtaW4="}

Decode the password data:
$ echo 'UyFCXCpkJHpEc2I9' | base64 --decode
S!B*d$zDsb=

In one step:
$ kubectl get secret db-user-pass -o jsonpath='{.data.password}' | base64 --decode
S!B*d$zDsb=

Using a Secret in a Pod

Using a Secret in a Pod

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 readOnly: true
 volumes:
 - name: foo
 secret:
 secretName: mysecret
 optional: true

Using a Secret in a Pod
apiVersion: v1
kind: Pod
metadata:
 name: secret-demo-pod
spec:
 containers:
 - name: demo
 image: alpine
 command: ["sleep", "3600"]
 env:
 # Define the environment variable
 - name: PASSWORD
 valueFrom:
 SecretKeyRef:
 name: game-secret # The Secret this value comes from.
 key: game-password # The key to fetch.

Taints & Tolerations
And Affinity & Anti-affinity

Taints & Tolerations

Taint
applied to a Kubernetes Node that signals the scheduler to
avoid or not schedule certain Pods

Toleration
applied to a Pod definition and provides an exception to the
taint

Using Taints & Tolerations

No pod will be able to schedule onto node-5c283f unless it has a matching toleration.
$ kubectl taint nodes node-5c283f type=high-cpu:NoSchedule
node/node-5c283f tainted

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 tolerations:
 - key: "high-cpu"
 operator: "Exists"
 effect: "NoSchedule"

Example use cases for Taints

Dedicated nodes

Example use cases for Taints

Nodes with Special Hardware

Affinity & Anti-affinity

Node Affinity
rules that force the pod to be deployed, either exclusively or
in priority, in certains nodes

Pod Affinity
indicate that a group of pods should always be deployed
together on the same node (because of network
communication, shared storage, etc.)

Deploy applications to specific Nodes

https://help.ovhcloud.com/csm/fr-public-cloud-kubernetes-label-nodeaffinity-node-pools

https://help.ovhcloud.com/csm/fr-public-cloud-kubernetes-label-nodeaffinity-node-pools

OVHcloud Managed Kubernetes
Why would you choose ours?

Certified Kubernetes platform

OVHcloud Managed Private Registry

To privately store Docker images and Helm charts

Node Pools

Users can define node pools
controlled from inside Kubernetes

Autoscaling

Based on node pools
New instances are spawned or released based on load

Kubernetes in a private network

Kubernetes can be put inside the OVHcloud vRack

Other features

● Healthcare HDS 1 conformity
● ISO 27001/27701/27017/27018 conformity
● Terraform provider
● Control plane audit logs
● API server IP restrictions
● …

https://github.com/ovh/public-cloud-roadmap/projects/1
https://discord.com/invite/ovhcloud

https://github.com/ovh/public-cloud-roadmap/projects/1

Demo: Working with OVHcloud API

https://docs.ovh.com/gb/en/kubernetes/deploying-hello-world-ovh-api/

Infrastructure as Code
The perfect companion to a cloud

Infrastructure as Code (IaC)

Manage a virtual infrastructure
with scripts and/or configuration files

IaC tools

HashiCorp Terraform

Modular architecture: providers

Configuration packages: modules

Terraform registry

OVHcloud Terraform Provider

https://registry.terraform.io/providers/ovh/ovh/latest/docs

https://registry.terraform.io/providers/ovh/ovh/latest/docs

OVHcloud Terraform Provider

https://github.com/ovh/terraform-provider-ovh

https://github.com/ovh/terraform-provider-ovh

Demo: Using Terraform

https://docs.ovh.com/gb/en/kubernetes/creating-a-cluster-through-terraform/

Needed tools: terraform

https://www.terraform.io/

That's all, folks!
Thank you all!

