
© 2020 Ververica

Marta Paes (@morsapaes)

Developer Advocate

Interactive Data Exploration

With PyFlink and Zeppelin Notebooks

@morsapaes2

About Ververica

Original Creators of
 Apache Flink®

Enterprise Stream Processing
With Ververica Platform

Part of
Alibaba Group

@morsapaes3

Apache Flink

Learn more: flink.apache.org

Flink is an open source framework and distributed engine for stateful stream processing.

Flink Runtime
Stateful Computations over Data Streams

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes4

Apache Flink

Learn more: flink.apache.org

Flink is an open source framework and distributed engine for stateful stream processing.

Flexible
APIs

Fault
Tolerance

High
Performance

Stateful
Processing

Flink Runtime
Stateful Computations over Data Streams

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes5

Use Cases

Learn more: flink.apache.org

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

Flink Runtime
Stateful Computations over Data Streams

This gives you a robust foundation for a wide range of use cases:

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes6

Use Cases

Learn more: flink.apache.org

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

Flink Runtime
Stateful Computations over Data Streams

Classical, core stream processing use cases that build on the primitives of streams, state and time.

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes7

Service Monitoring & Anomaly Detection

Stateful Stream Processing

● Explicit control over these primitives

● Complex computations and customization

● Maximize performance and reliability

Large-scale Data Pipelines ML-Based Fraud Detection

Example Use Cases

Classical, core stream processing use cases that build on the primitives of streams, state and time.

https://www.youtube.com/watch?v=9y27FJgz5-M
https://www.youtube.com/watch?v=p8qSWE_nAAE
https://www.ververica.com/blog/real-time-fraud-detection-ing-bank-apache-flink?utm_source=cp&utm_campaign=wad2020

@morsapaes8

Use Cases

Learn more: flink.apache.org

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

Flink Runtime
Stateful Computations over Data Streams

More high-level or domain-specific use cases that can be modeled with SQL or Python and dynamic tables.

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

@morsapaes9

Streaming Analytics & ML

● Focus on logic, not implementation

● Mixed workloads (batch and streaming)

● Maximize developer speed and autonomy

More high-level or domain-specific use cases that can be modeled with SQL or Python and dynamic tables.

Example Use Cases

ML Feature GenerationUnified Online/Offline Model Training E2E Streaming Analytics Pipelines

https://youtu.be/gSRjTm4AHjk
https://www.ververica.com/blog/flink-for-online-machine-learning-and-real-time-processing-at-weibo
https://youtu.be/nGOrFtPfci0

@morsapaes10

More Flink Users

Learn More: Powered by Flink, Speakers – Flink Forward San Francisco 2019, Speakers – Flink Forward Europe 2019

https://flink.apache.org/poweredby.html?utm_source=cp&utm_campaign=wad2020
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

@morsapaes11

@morsapaes12

Python is...pretty stacked?

Source: JetBrains' Developer Ecosystem Report 2020

Mature analytics stack, with libraries that are

fast and intuitive.

https://www.jetbrains.com/lp/devecosystem-2020/python/

@morsapaes13

2008

1995

2003

2001

2015

Mature analytics stack, with libraries that are

fast and intuitive.

Source: JetBrains' Developer Ecosystem Report 2020

...and also timeless!

https://www.jetbrains.com/lp/devecosystem-2020/python/

@morsapaes14

2008

1995

2003

2001

2015

Mature analytics stack, with libraries that are

fast and intuitive.

Older libraries are mostly restricted to a data

size that fits in memory (RAM), and designed to

run on a single core (CPU).

...and also timeless!

@morsapaes15

This is a problem.

@morsapaes16

@morsapaes17

But you still want to use these powerful libraries, right?

@morsapaes18

Why PyFlink?

@morsapaes19

Why PyFlink?

Expose the functionality of Flink to Python users

@morsapaes20

Why PyFlink?

Distribute and scale the functionality of Python through Flink

Learn more: The Integration of Pandas into PyFlink.

https://flink.apache.org/2020/08/04/pyflink-pandas-udf-support-flink.html

@morsapaes21

Flink at Alibaba scale

Search Recomm. SecurityBIAds

incl. sub-second updates to the GMV dashboard

Real-time Data Applications

Infrastructure

>5K
nodes

Data Size

985PB

Throughput (Peak)

2.5B
events/sec

Latency

Sub-sec

State Size (Biggest)

100TB>500K
CPU cores

Learn more: Optimizations in Blink Runtime for Global Shopping Festival at Alibaba

Double 11 / Singles Day

https://www.youtube.com/watch?v=KPXWg-MllFQ

@morsapaes22

PyFlink in a Nutshell*

● Native SQL integration

● Unified APIs for batch and streaming

● Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

* As of Flink 1.11, only the Table API is exposed through PyFlink. The low-level DataStream API is on the roadmap (FLIP-130).

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298

@morsapaes23

PyFlink in a Nutshell*

● Native SQL integration

● Unified APIs for batch and streaming

● Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

UDF Support

Pandas UDFPython UDF

Execution

BatchStreaming

* As of Flink 1.11, only the Table API is exposed through PyFlink. The low-level DataStream API is on the roadmap (FLIP-130).

+UDAF (WIP) +UDAF (WIP)

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298

@morsapaes24

PyFlink in a Nutshell*

● Native SQL integration

● Unified APIs for batch and streaming

● Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

Apache Zeppelin

UDF Support

Pandas UDFPython UDF

Notebooks

Execution

BatchStreaming

* As of Flink 1.11, only the Table API is exposed through PyFlink. The low-level DataStream API is on the roadmap (FLIP-130).

Formats ML Library (WIP)

FLIP-39

+UDAF (WIP) +UDAF (WIP)

Native Connectors

Apache Kafka

Elasticsearch

FileSystems

JDBC HBase

+

Kinesis

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298
https://cwiki.apache.org/confluence/display/FLINK/FLIP-39+Flink+ML+pipeline+and+ML+libs

@morsapaes25

PyFlink in a Nutshell*

● Native SQL integration

● Unified APIs for batch and streaming

● Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

Apache Zeppelin

UDF Support

Pandas UDFPython UDF

Notebooks

Native Connectors

Apache Kafka

Elasticsearch

FileSystems

JDBC HBase

Execution

BatchStreaming

* As of Flink 1.11, only the Table API is exposed through PyFlink. The low-level DataStream API is on the roadmap (FLIP-130).

+

Formats ML Library (WIP)

FLIP-39

+UDAF (WIP) +UDAF (WIP)

Kinesis

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298
https://cwiki.apache.org/confluence/display/FLINK/FLIP-39+Flink+ML+pipeline+and+ML+libs

@morsapaes26

@morsapaes27

Apache Zeppelin

Web-based notebook that provides an interactive and collaborative computing environment.

...

● Support for a lot of interpreters

● Polyglot notes

● Built-in interactive visualizations

● Multi-tenancy

● Pluggable notebook storage (e.g. git)

Advantages

@morsapaes28

DEMO

@morsapaes29

DEMO

@morsapaes30

DEMO

@morsapaes31

DEMO

@morsapaes32

DEMO

@morsapaes33

DEMO

@morsapaes34

Want to learn more about Flink?

© 2020 Ververica

Follow me on Twitter: @morsapaes

Learn more about Flink: https://flink.apache.org/

Thank you, ApacheCon!

https://flink.apache.org/

