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Refactoring Legacy Code

● About me

– PHP 5.3 Certified

– Consultant at Zend Technologies

– Zend Certification Advisory Board

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance (ultra) runner

– Judo Black Belt Instructor
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Refactoring Legacy Code

● Fan of iteration

– Pretty much everything requires iteration to do well:

● Long distance running
● Judo
● Development
● Evading project managers
● Refactoring!
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Refactoring Legacy Code

● Modernizing

– “Modernizing Legacy Applications in PHP” on LeanPub – by Paul M. Jones

– http://mlaphp.com
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Refactoring Legacy Code

● What is “Legacy Code”

– Is there a coding standard for your project?
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Refactoring Legacy Code

● What is “Legacy Code”

– Is there a coding standard for your project?

– Is code using OOP?

– Is Composer used in your project?

– Is the project using a framework?

– Are you unit testing?

– Does your project avoid NIH?

If you can answer “No” to any of these,
you may be creating “Legacy Code”!!!



14

Refactoring Legacy Code

● What is “refactoring”?

– “...process of changing a computer program's source code without 
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

– No functionality added

– Code quality
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Refactoring Legacy Code

● Two hats

– Adding Functionality Hat

– Refactoring Hat

– We add functionality, then refactor, then add more functionality ...
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Refactoring Legacy Code

● Then optimize

– Do not optimize while refactoring.

– Separate step.

– Refactoring is NOT optimizing.
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Refactoring Legacy Code

● Source Control

– Refactor in branch

– Allows rollback
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Refactoring Legacy Code

● Editor/IDE

– Makes searching easier

– Search within project



19

Refactoring Legacy Code

● Style Guide

– Framework Interop Group

● http://php-fig.org
● PSR

– Faster reading

– United team
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Refactoring Legacy Code

● Testing

– Consistent results

– Prevents breaks

– Speeds up development
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Refactoring Legacy Code

● Modernizing Steps

– Autoloading

– Consolidate Classes

– Cleanup Globals

– Replace “new” (instantiation)

– Create Tests

– Extract SQL

– Extract Logic

– Replace Remaining “Includes”
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Refactoring Legacy Code

● Autoloading

– Namespaces

– PSR-0

● Legacy code typically used long class names

– Usage = My_Long_Class_Name
– Translates to “/My/Long/Class/Name.php”
– Class = My_Long_Class_Name

● If not, then PSR-4

– Use My\Great\Namespace\Name
– Translates to /My/Great/Namespace/Name.php
– Class = Name
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Refactoring Legacy Code

● Autoloading Approaches

– Approaches

● Global function
● Closure
● Static or Instance Method (preferred, if possible)
● __autoload() - PHP v 5.0

– Need a central place for classes
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Refactoring Legacy Code

● Consolidate Classes

– Move to one location

● Could be named “includes”, “classes”, “src”, “lib”, etc.
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Refactoring Legacy Code

● Consolidate Classes Step 1

– Search for include statements

● (include, include_once, require, require_once)



26

Refactoring Legacy Code

● Consolidate Classes Step 2



27

Refactoring Legacy Code

● Consolidate Classes Step 3

– User class is now autoloaded, no more require_once.
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Refactoring Legacy Code

● Consolidate Classes Repeat

– Search for more instances
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Refactoring Legacy Code

● Cleanup “Global” Dependencies Steps

1 Search for global reference

2 Move global calls to constructor

3 Convert global call to a constructor parameter

4 Update global call to a class

5 Instantiate new class and pass as parameter (DI)

6 Repeat
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Refactoring Legacy Code

● Global Cleanup Step 1

– Search for global reference
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Refactoring Legacy Code

● Global Cleanup Step 2 & 3

– Move global call to constructor

– Pass values as properties
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Refactoring Legacy Code

● Global Cleanup Step 4

– Convert call to a constructor parameter
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Refactoring Legacy Code

● Global Cleanup Step 5

– Instantiate new class

– Inject as parameter (DI)
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Refactoring Legacy Code

● Global Cleanup Repeat

– Look for more instances to clean up
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Refactoring Legacy Code

● Steps to Replacing “new”

1 Search for “new”

2 Extract instantiation to constructor parameter. (if one time)

● Or extract block of creation code to new Factory class. (if repeated)

3 Update instantiation calls

4 Repeat
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Refactoring Legacy Code

● Replacing “new” Step 1 (Single)

– Before
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Refactoring Legacy Code

● Replacing “new” Step 2 (Single)

– Inject Db object into class constructor.  (DI)

– No longer instantiating within class
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Refactoring Legacy Code

● Replacing “new” (Multiple)
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Refactoring Legacy Code

● Replacing “new” Step 3 (Multiple)

– Create factory

– Extract “new” call to new factory
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Refactoring Legacy Code

● Replacing “new” Step 4 (Multiple)

– Update instantiation calls
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Refactoring Legacy Code

● Replacing “new” Step 4 (Multiple)

– Call to factory
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Refactoring Legacy Code

● Replacing “new” Repeat
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Refactoring Legacy Code

● Write Tests

– Code is fairly clean

– Write tests for entire application

– If not testable, refactor

● Extract method
● Replace temp with query
● Etc.
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Refactoring Legacy Code

● Extract SQL

1 Search for SQL

2 Move statement and relevant logic to Gateway class

3 Create test for new class

4 Alter code to use new method

5 Repeat
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Refactoring Legacy Code

● Extract Logic

1 Search for uses of Gateway class outside of Transaction classes

2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat
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Refactoring Legacy Code

● Replace “includes”

– Search for left over includes

– If in current class

1 Copy contents into file directly

2 Refactor for: no globals, no 'new', DI, return instead of output, no includes

– More often

1 Copy contents of include as-is to new class method

2 Replace with in-line instantiation

3 Search for other uses of same, and update them as well

4 Delete original include file, regression test

– Test, create new tests if needed

– Repeat
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Refactoring Legacy Code

● Additional Possibilities

– Can now implement framework

– Leverage services

– Leverage events

– Use Composer
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Refactoring Legacy Code

● Why refactor

– Less bugs

– Faster development

– More stable

– Easier onboarding

– Save $$$
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Refactoring Legacy Code

● When/How to refactor

– Ask boss for time

– “Leave it cleaner than you found it”

– Do it on your own, it makes YOUR life easier
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Refactoring Legacy Code

● Challenges

– Manager Buy In

– Technical Challenge

– Social Challenge
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Refactoring Legacy Code

● Convince the boss

– Three kinds of managers:

● Tech Savvy
● Quality Centric
● Time Driven

Right...
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Refactoring Legacy Code

● Tech Savvy boss

– Lower cyclomatic complexity

– SOLID

– Separation of concerns

– MVC/Framework

– Less bugs

– Easier onboarding
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Refactoring Legacy Code

● Quality Centric boss

– Code quality

– Tests

– Happier customers

– Less bugs
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Refactoring Legacy Code

● Time driven boss

– Faster feature delivery

– Higher productivity - less time reading

– Faster onboarding

– Less testing time

– Less debugging
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Refactoring Legacy Code

● Concluding Thoughts

– Do not refactor a broken application

– Have tests in place prior to refactor

● Unit tests or
● Functional tests or
● Manual tests

– Do things in small steps

– Love iteration!



 

● Thank you!

– Please rate at: https://joind.in/talk/a3ecc

Adam Culp

http://www.geekyboy.com

http://RunGeekRadio.com 

Twitter @adamculp

Questions?
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