Refactoring Legacy Code

By:
Adam Culp
Twitter: @adamculp

https://joind.in/talk/a3ecc

About me

PHP 5.3 Certified

Consultant at Zend Technologies
Zend Certification Advisory Board
Organizer SoFloPHP (South Florida)
Organized SunshinePHP (Miami)
Long distance (ultra) runner

Judo Black Belt Instructor zend

CERTIFIED
ENGIMEER

/ SUNSHINEPHP

CONFERENCE

Refactoring Legacy Code

Fan of iteration

- Pretty much everything requires iteration to do well:

Long distance running
Judo

Development

Evading project managers
Refactoring!

|'|:|I.|:|1'||'||'IJ|H. by nrhlﬁll ol F.llh':'"l“ {1d_.||.'lr|

Refactoring Legacy Code

* Modernizing

“Modernizing Legacy Applications in PHP” on LeanPub - by Paul M. Jones

- http://mlaphp.com

Modernizing Legacy
Applications in PHP

Paul M. Jones

Refactoring Legacy Code

s

y Code”

. . T e, TR ety .

 What is “Legac

- Is there a coding standard for your project?

Refactoring Legacy Code

s

y Code”

. . T e, TR ety .

 What is “Legac

- Is there a coding standard for your project?

- Is code using OOP?

Refactoring Legacy Code

s

y Code”

. . T e, TR ety .

 What is “Legac
- Is there a coding standard for your project?

- Is code using OOP?

- Is Composer used in your project?

Refactoring Legacy Code

e T = T amoa ——aty o ——

s

y Code”

 What is “Legac
- Is there a coding standard for your project?
- Is code using OOP?

- Is Composer used in your project?

- Is the project using a framework?

Refactoring Legacy Code

 What is “Leg

— e T = T amoa ——aty o ——

s

acy Code”

- Is there a coding standard for your project?
- Is code using OOP?
- Is Composer used in your project?

- Is the project using a framework?

- Are you unit testing?

Refactoring Legacy Code

e T = T amoa ——aty o ——

s

y Code”

 What is “Legac
- Is there a coding standard for your project?
- Is code using OOP?
- Is Composer used in your project?
- Is the project using a framework?

- Are you unit testing?

— Does your project avoid NIH?

Refactoring Legacy Code

. What is “Legacy Code”
- Is there a coding standard for your project?
- Is code using OOP?
- Is Composer used in your project?
- Is the project using a framework?
- Are you unit testing?

— Does your project avoid NIH?

If you can answer “No” to any of these,
you may be creating “Legacy Code”!!!

Refactoring Legacy Code

 What is “refactoring”?

- “...process of changing a computer program’'s source code without
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

- No functionality added
- Code quality

PII A

Refactoring

Refactoring Legacy Code

« Two hats

- Adding Functionality Hat
- Refactoring Hat

- We add functionality, then refactor, then add more functionality ...

P &

<CODER> ﬁﬁklk

Refactoring

Refactoring Legacy Code

 Then optimize
— Do not optimize while refactoring.

- Separate step.

— Refactoring is NOT optimizing.

Refactoring Legacy Code

- = — e

 Source Control

— Refactor in branch

- Allows rollback

O
gll SUBVERSION

Refactoring Legacy Code

[=i —

 Editor/ID

- Makes searching easier

-

- Search within project

php)

PhpStorm

2< NetBeans

Refactoring Legacy Code

i

L i

o Style Guide
- Framework Interop Group

e http://php-fig.org
e PSR

- Faster reading

- United team

www.php-fig.org

PHP Framework Interop Group

Refactoring Legacy Code

 Testing

— Consistent results
- Prevents breaks

— Speeds up development

O.
.Q
L J
.
L 3
.

PHPUnit

Refactoring Legacy Code

vy i

* Modernizing Steps
- Autoloading
- Consolidate Classes
— Cleanup Globals
- Replace “new” (instantiation)
— Create Tests
- Extract SQL

- Extract Logic

- Replace Remaining “Includes”

Refactoring Legacy Code

- - - = -— O

* Autoloading

— Namespaces
- PSR-0

* Legacy code typically used long class names

- Usage = My_Long_Class_Name
- Translates to “/My/Long/Class/Name.php”
- Class = My_Long_Class_Name
* If not, then PSR-4
- Use My\Great\Namespace\Name

- Translates to /My/Great/Namespace/Name.php
- Class = Name

Refactoring Legacy Code

i - S P g

s

* Autoloading Approaches
— Approaches

* Global function
 (Closure

« Static or Instance Method (preferred, if possible)
« _ autoload() - PHP v 5.0
- Need a central place for classes

Refactoring Legacy Code

- :ﬁ' == = i

 Consolidate Classes

- Move to one location

* Could be named “includes”, “classes”, “src”, “lib”, etc.

¥ = project-refactoring-legacy-code2
¥ 2 classes
¥ 2 Reflegcode
b] Autoloader.php
¥ 2 foo
» 2 bar
¥ 2 includes
> [B] setup.php
v 2 lib
¥ & sub
> [Auth.php
> [f] Role.php
> [8] User.php
» 18] index.php

Refactoring Legacy Code

= :ﬁ' = = = i

* Consolidate Classes Step 1

— Search for include statements

* (include, include_once, require, require_once)

1 <7php

require 'includes/setup.php’;
require_once 'lib/sub/User.php’;
M o...

guser = new User():

ff ...

=S W 00 =] O R s L R

* Consolidate Classes Step 2

Refactoring Legacy Code

¥ 5= project-refactoring-legacy-code2

¥ # classes
¥ & Reflegcode

> [f] Autoloader.php

¥ 2 foo
» 2 bar
¥ & includes
> [f] setup.php
¥ #lib
¥ 2 sub
» [£] Auth.php
> [F] Role.php
> [f] User.php
b 15 index.php

v 1= project-refactoring-legacy-code2

¥ (# classes
¥ 2 Reflegcode

> [¢] Autoloader.php

> [User.php
¥ & foo
» 2 bar
¥ & includes
» [6] setup.php
¥ & |ib
¥ & sub
> [#] Auth.php
> [F] Role.php
b 9] index.php

Refactoring Legacy Code

- :ﬁ' == = i

* Consolidate Classes Step 3

- User class is now autoloaded, no more require_once.

7] index.php)

<?php
require 'includes/setup.php’;

I,
// User class 1s now autoloaded

suser = new User();

ffo...

73]

Refactoring Legacy Code

- s i -— O

* Consolidate Classes Repeat

— Search for more instances

Refactoring Legacy Code

i - T e e e oy Sz

 Cleanup “Global” Dependencies Steps
1 Search for global reference
2 Move global calls to constructor
3 Convert global call to a constructor parameter
4 Update global call to a class

5 Instantiate new class and pass as parameter (Dl)

6 Repeat

Refactoring Legacy Code

* Global Cleanup Step 1

- Search for global reference

5 Example.php) [] setup.php

1 <7php

2= class Example

3 {
= public function fetchi()

4
5 {

6 global $db;

7 return $db->query(...);
8

9

e

}
5

73]

[F] Example.php | 7| setup.php 53

_______ 2 // some setup code, then:
v 3 %$db = new Db('hostname', 'username', 'password’);

Refactoring Legacy Code

* Global Cleanup Step 2 & 3
- Move global call to constructor

- Pass values as properties

7] Example.php I

1 <?php
2= class Example

protected $db;

public function construct()

{
global $db;
$this-=db = %db;
}

public function fetch()

{
return $this->db->query(...);

Refactoring Legacy Code

* Global Cleanup Step 4

- Convert call to a constructor parameter

| Example.php X

1 <7php
- class Example
{
protected $db;
. 62 public function construct(Db $db)
{
$this->db = $db;
}
1 public function fetch()
- {
return $this->db->query(...);
}

Refactoring Legacy Code

* Global Cleanup Step 5

- Instantiate new class

- Inject as parameter (DI)

|| page_script.php I

=

<7php
// a setup file that creates a %db variable
require 'includes/setup.php’;

rf ...

$example = new Example($db);
73]

00 =] On LN s LJ P

Refactoring Legacy Code

L i

* Global Cleanup

vy i

by

Repeat

- Look for more instances to clean up

Refactoring Legacy Code

» Steps to Replacing “new”
1 Search for “new”
2 Extract instantiation to constructor parameter. (if one time)

» Or extract block of creation code to new Factory class. (if repeated)
3 Update instantiation calls

4 Repeat

Refactoring Legacy Code

_ e . = . ;-—r-:s,-_-“l--—-. -:_: —afr _-.

* Replacing “new” Step 1 (Single)

- Before

7] ItemsGateway.php X

1 <?php
2 class ItemsGateway

4 protected $db host;
5 protected $db user;
6 protected $db pass;
7 protected $db;

8

9 public function construct($db host, $db user, $db pass)
16 {

11 $this-=db host = $db host;

12 $this->db user = $db user;

13 $this->db pass = $db pass;

14

15 $this->db = new Db($this->db host, $this-=>db user, $this-=db pass);

Refactoring Legacy Code

-

* Replacing “new” Step 2 (Single)

B s - —

s F,

- Inject Db object into class constructor. (DI)

- No longer instantiating within class

7] ItemsGateway.php X

1 <?php
2 class ItemsGateway

4 protected $db;
5

"""" 6 public function construct(Db $db)
7 {

8 $this->db = $db;

9 }

16 [l

Refactoring Legacy Code

Py = I, e e — e

* Replacing “new” (Multiple)

7] ItemsGateway.php 53

1 <7php

2 class ItemsGateway

3 {

4 protected %db;

5

6 public function construct(Db $db)
7 {

8 $this-=db = $db;

9 }

18

11 public function selectAll()

12 {

13 $rows = $this-=db->query("SELECT * FROM items ORDER BY id");
14 $item collection = array();

15 foreach (%$rows as $row) {

16 $item collection[] = new Item($row);
17 }

18 return $item collection;

19 }
20 }
21 77

Refactoring Legacy Code

e T e e g T i

* Replacing “new” Step 3 (Multiple)
- Create factory

- Extract “new” call to new factory

7] ItemFactory.php X

1 <7php
2= class ItemFactory

= public function newInstance(array $item data)

4
5 {

B return new Item($item data);
7

8

Refactoring Legacy Code

w” Step 4 (Multiple)

- Update instantiation calls

 Replacing “ne

°| page_script.php &3

'—I

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

H ...

// create a gateway
$items gateway = new ItemsGateway($db host, $db user, $db pass);

W0 00 =] On LN B) R

7> ©| page_script.php &3

=

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

// create a gateway with its dependencies
$db = new Db(%db host, $db user, %db pass);
$item factory = new ItemFactory;

$items gateway = new ItemsGateway($db, $item factory);
73]

W 00 =] O LA s L P

Refactoring Legacy Code

* Replacing “new” Step 4 (Multiple)
- Call to factory

protected $db;
protected $item factory;

public function ~_construct(Db $db, ItemFactory $item factory)

{
$this->db = %$db;
$this->item factory = Sitem factory;

}

public function selectAll()

Srows = $this->db->query("SELECT * FROM items ORDER BY id");
$item collection = array();
foreach ($rows as Srow) {

$item collection[] = $this->item factory-=newInstance($row);

}

return $item collection;

Refactoring Legacy Code

_—— . s T A e e —aty, | it
| - o = :

 Replacing “new” Repeat

Refactoring Legacy Code

* Write Tests
- Code is fairly clean
- Write tests for entire application
- If not testable, refactor

 Extract method

* Replace temp with query
» Etc.

Refactoring Legacy Code

Extract SQL
1 Search for SQL

2 Move statement and relevant logic to Gateway class
3 Create test for new class

4 Alter code to use new method

5 Repeat

Refactoring Legacy Code

* Extract Logic
1 Search for uses of Gateway class outside of Transaction classes
2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat

Refactoring Legacy Code

- :ﬁ' = _' = = —

* Replace “includes”

— Search for left over includes
— If in current class

i Copy contents into file directly
. Refactor for: no globals, no 'new’, DI, return instead of output, no includes
— More often

i Copy contents of include as-is to new class method
. Replace with in-line instantiation
s Search for other uses of same, and update them as well
« Delete original include file, regression test
- Test, create new tests if needed

- Repeat

Refactoring Legacy Code

ey T T —

» Additional Possibilities
- Can now implement framework
- Leverage services

- Leverage events

- Use Composer

Refactoring Legacy Code

 Why refactor
- Less bugs
- Faster development

- More stable

- Easier onboarding

— Save $SS

Refactoring Legacy Code

* When/How to refactor

— Ask boss for time

“Leave it cleaner than you found it”

— Do it on your own, it makes YOUR life easier

Refactoring Legacy Code

- r o s e —

* Challenges
— Manager Buy In

- Technical Challenge

- Social Challenge

Refactoring Legacy Code

 Convince the boss

- Three kinds of managers:
* Tech Savvy
e Quality Centric
 Time Driven

Refactoring Legacy Code

 Tech Savvy boss

- Lower cyclomatic complexity
- SOLID

- Separation of concerns

- MVC/Framework

- Less bugs

- Easier onboarding

Refactoring Legacy Code

* Quality Centric boss

- = — _

Code quality
Tests
Happier customers

Less bugs

B e T e -

Refactoring Legacy Code

* Time driven boss

- Faster feature delivery
- Higher productivity - less time reading
- Faster onboarding
- Less testing time

- Less debugging

Refactoring Legacy Code

e e

* Concluding Th

- P "-r-l:,-_-“--—-.;_.‘.:_ T ——

s

oughts

— Do not refactor a broken application
- Have tests in place prior to refactor

e Unit tests or
* Functional tests or
* Manual tests

— Do things in small steps

- Love iteration!

* Thank you!

- Please rate at: https://joind.in/talk/a3ecc

Adam Culp
http://www.geekyboy.com
http://RunGeekRadio.com

Twitter @adamculp

Questions?

	Intro
	About me
	Iteration
	Modernizing Legacy Applications Book
	Slide 7
	What is "Legacy Code"
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Refactoring hat
	Two hats
	Optimization Step
	Source Control
	Editor/IDE
	Coding Style
	Testing
	Autoloading Standards
	Slide 22
	Autoloading Approaches
	Consolidate Classes
	Consolidate Classes Step 1
	Consolidate Classes Step 2
	Consolidate Classes Step 3
	Repeat Class Consolidation
	Global Dependencies
	Global Cleanup Step 1
	Global Cleanup Step 2 & 3
	Global Cleanup Step 4
	Global Cleanup Step 5
	Global Cleanup Repeat
	Replace "new"
	Replace "new" Step 1 (single)
	Replace "new" Step 2 (single)
	Replace "new" (multi)
	Replace "new" Step 3 (multi)
	Replace "new" Step 4a (multi)
	Replace "new" Step 4b (multi)
	Replace "new" Repeat
	Write Tests
	Extract SQL
	Extract Logic
	Replace "includes"
	Additional Possibilities
	Why Refactor
	When/How to refactor
	Slide 50
	Convince the boss
	Tech savvy boss
	Quality centric boss
	Time driven boss
	Conclusion
	Thank you

