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Fan of iteration

- Pretty much everything requires iteration to do well:

Long distance running
Judo

Development

Evading project managers
Refactoring!
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* Modernizing

“Modernizing Legacy Applications in PHP” on LeanPub - by Paul M. Jones

- http://mlaphp.com

Modernizing Legacy
Applications in PHP

Paul M. Jones
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. What is “Legacy Code”
- Is there a coding standard for your project?
- Is code using OOP?
- Is Composer used in your project?
- Is the project using a framework?
- Are you unit testing?

— Does your project avoid NIH?

If you can answer “No” to any of these,
you may be creating “Legacy Code”!!!
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 What is “refactoring”?

- “...process of changing a computer program’'s source code without
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

- No functionality added
- Code quality

PII A

Refactoring
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« Two hats

- Adding Functionality Hat
- Refactoring Hat

- We add functionality, then refactor, then add more functionality ...

P &
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Refactoring
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 Then optimize
— Do not optimize while refactoring.

- Separate step.

— Refactoring is NOT optimizing.
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 Source Control

— Refactor in branch

- Allows rollback

O
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 Editor/ID

- Makes searching easier

-

- Search within project

php)

PhpStorm

2< NetBeans
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o Style Guide
- Framework Interop Group

e http://php-fig.org
e PSR

- Faster reading

- United team

www.php-fig.org

PHP Framework Interop Group
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 Testing

— Consistent results
- Prevents breaks

— Speeds up development

O.
.Q
L J
.
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.

PHPUnit
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* Modernizing Steps
- Autoloading
- Consolidate Classes
— Cleanup Globals
- Replace “new” (instantiation)
— Create Tests
- Extract SQL

- Extract Logic

- Replace Remaining “Includes”
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* Autoloading

— Namespaces
- PSR-0

* Legacy code typically used long class names

- Usage = My_Long_Class_Name
- Translates to “/My/Long/Class/Name.php”
- Class = My_Long_Class_Name
* If not, then PSR-4
- Use My\Great\Namespace\Name

- Translates to /My/Great/Namespace/Name.php
- Class = Name
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* Autoloading Approaches
— Approaches

* Global function
 (Closure

« Static or Instance Method (preferred, if possible)
« _ autoload() - PHP v 5.0
- Need a central place for classes
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 Consolidate Classes

- Move to one location

* Could be named “includes”, “classes”, “src”, “lib”, etc.

¥ = project-refactoring-legacy-code2
¥ 2 classes
¥ 2 Reflegcode
b ] Autoloader.php
¥ 2 foo
» 2 bar
¥ 2 includes
> [B] setup.php
v 2 lib
¥ & sub
> [ Auth.php
> [f] Role.php
> [8] User.php
» 18] index.php
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* Consolidate Classes Step 1

— Search for include statements

* (include, include_once, require, require_once)

1 <7php

require 'includes/setup.php’;
require_once 'lib/sub/User.php’;
M o...

guser = new User():

ff ...
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* Consolidate Classes Step 2

Refactoring Legacy Code

¥ 5= project-refactoring-legacy-code2

¥ # classes
¥ & Reflegcode

> [f] Autoloader.php

¥ 2 foo
» 2 bar
¥ & includes
> [f] setup.php
¥ #lib
¥ 2 sub
» [£] Auth.php
> [F] Role.php
> [f] User.php
b 15 index.php

v 1= project-refactoring-legacy-code2

¥ (# classes
¥ 2 Reflegcode

> [¢] Autoloader.php

> [ User.php
¥ & foo
» 2 bar
¥ & includes
» [6] setup.php
¥ & |ib
¥ & sub
> [#] Auth.php
> [F] Role.php
b 9] index.php
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* Consolidate Classes Step 3

- User class is now autoloaded, no more require_once.

7] index.php )

<?php
require 'includes/setup.php’;

I,
// User class 1s now autoloaded

suser = new User();

ffo...

73]
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* Consolidate Classes Repeat

— Search for more instances
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 Cleanup “Global” Dependencies Steps
1 Search for global reference
2 Move global calls to constructor
3 Convert global call to a constructor parameter
4 Update global call to a class

5 Instantiate new class and pass as parameter (Dl)

6 Repeat
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* Global Cleanup Step 1

- Search for global reference

5 Example.php ) [] setup.php

1 <7php

2= class Example

3 {
= public function fetchi()

4
5 {

6 global $db;

7 return $db->query(...);
8

9

e

}
5

73]

[F] Example.php | 7| setup.php 53

_______ 2 // some setup code, then:
v 3 %$db = new Db('hostname', 'username', 'password’);




Refactoring Legacy Code

* Global Cleanup Step 2 & 3
- Move global call to constructor

- Pass values as properties

7] Example.php I

1 <?php
2= class Example

protected $db;

public function  construct()

{
global $db;
$this-=db = %db;
}

public function fetch()

{
return $this->db->query(...);
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* Global Cleanup Step 4

- Convert call to a constructor parameter

| Example.php X

1 <7php
- class Example
{
protected $db;
. 62 public function construct(Db $db)
{
$this->db = $db;
}
1 public function fetch()
- {
return $this->db->query(...);
}
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* Global Cleanup Step 5

- Instantiate new class

- Inject as parameter (DI)

|| page_script.php I

=

<7php
// a setup file that creates a %db variable
require 'includes/setup.php’;

rf ...

$example = new Example($db);
73]
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* Global Cleanup

vy i

by

Repeat

- Look for more instances to clean up
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» Steps to Replacing “new”
1 Search for “new”
2 Extract instantiation to constructor parameter. (if one time)

» Or extract block of creation code to new Factory class. (if repeated)
3 Update instantiation calls

4 Repeat
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* Replacing “new” Step 1 (Single)

- Before

7] ItemsGateway.php X

1 <?php
2 class ItemsGateway

4 protected $db host;
5 protected $db user;
6 protected $db pass;
7 protected $db;

8

9 public function construct($db host, $db user, $db pass)
16 {

11 $this-=db host = $db host;

12 $this->db user = $db user;

13 $this->db pass = $db pass;

14

15 $this->db = new Db($this->db host, $this-=>db user, $this-=db pass);
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* Replacing “new” Step 2 (Single)
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- Inject Db object into class constructor. (DI)

- No longer instantiating within class

7] ItemsGateway.php X

1 <?php
2 class ItemsGateway

4 protected $db;
5

"""" 6 public function construct(Db $db)
7 {

8 $this->db = $db;

9 }

16 [l
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* Replacing “new” (Multiple)

7] ItemsGateway.php 53

1 <7php

2 class ItemsGateway

3 {

4 protected %db;

5

6 public function construct(Db $db)
7 {

8 $this-=db = $db;

9 }

18

11 public function selectAll()

12 {

13 $rows = $this-=db->query("SELECT * FROM items ORDER BY id");
14 $item collection = array();

15 foreach (%$rows as $row) {

16 $item collection[] = new Item($row);
17 }

18 return $item collection;

19 }
20 }
21 77
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* Replacing “new” Step 3 (Multiple)
- Create factory

- Extract “new” call to new factory

7] ItemFactory.php X

1 <7php
2= class ItemFactory

= public function newInstance(array $item data)

4
5 {

B return new Item($item data);
7

8
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w” Step 4 (Multiple)

- Update instantiation calls

 Replacing “ne

°| page_script.php &3

'—I

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

H ...

// create a gateway
$items gateway = new ItemsGateway($db host, $db user, $db pass);

W0 00 =] On LN B ) R

7> ©| page_script.php &3

=

<7php
// a setup file that creates a $db variable
require 'includes/setup.php’;

// create a gateway with its dependencies
$db = new Db(%db host, $db user, %db pass);
$item factory = new ItemFactory;

$items gateway = new ItemsGateway($db, $item factory);
73]
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* Replacing “new” Step 4 (Multiple)
- Call to factory

protected $db;
protected $item factory;

public function ~_construct(Db $db, ItemFactory $item factory)

{
$this->db = %$db;
$this->item factory = Sitem factory;

}

public function selectAll()

Srows = $this->db->query("SELECT * FROM items ORDER BY id");
$item collection = array();
foreach ($rows as Srow) {

$item collection[] = $this->item factory-=newInstance($row);

}

return $item collection;
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 Replacing “new” Repeat
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* Write Tests
- Code is fairly clean
- Write tests for entire application
- If not testable, refactor

 Extract method

* Replace temp with query
» Etc.
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Extract SQL
1 Search for SQL

2 Move statement and relevant logic to Gateway class
3 Create test for new class

4 Alter code to use new method

5 Repeat
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* Extract Logic
1 Search for uses of Gateway class outside of Transaction classes
2 Extract logic to Transaction classes

3 Test

4 Write new tests where needed

5 Repeat
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* Replace “includes”

— Search for left over includes
— If in current class

i Copy contents into file directly
. Refactor for: no globals, no 'new’, DI, return instead of output, no includes
—  More often

i Copy contents of include as-is to new class method
. Replace with in-line instantiation
s Search for other uses of same, and update them as well
« Delete original include file, regression test
- Test, create new tests if needed

- Repeat




Refactoring Legacy Code

ey T T —

» Additional Possibilities
- Can now implement framework
- Leverage services

- Leverage events

- Use Composer
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 Why refactor
- Less bugs
- Faster development

- More stable

- Easier onboarding

— Save $SS
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* When/How to refactor

— Ask boss for time

“Leave it cleaner than you found it”

— Do it on your own, it makes YOUR life easier
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* Challenges
— Manager Buy In

- Technical Challenge

- Social Challenge
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 Convince the boss

- Three kinds of managers:
* Tech Savvy
e Quality Centric
 Time Driven
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 Tech Savvy boss

- Lower cyclomatic complexity
- SOLID

- Separation of concerns

- MVC/Framework

- Less bugs

- Easier onboarding
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* Quality Centric boss

- = — _

Code quality
Tests
Happier customers

Less bugs

B e T e -




Refactoring Legacy Code

* Time driven boss

- Faster feature delivery
- Higher productivity - less time reading
- Faster onboarding
- Less testing time

- Less debugging
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— Do not refactor a broken application
- Have tests in place prior to refactor

e Unit tests or
* Functional tests or
* Manual tests

— Do things in small steps

- Love iteration!




* Thank you!

- Please rate at: https://joind.in/talk/a3ecc

Adam Culp
http://www.geekyboy.com
http://RunGeekRadio.com

Twitter @adamculp

Questions?
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