
Introduction to
OpenAPI

Lorna Mitchell, Nexmo

Smile!

Developer Advocate, I LOVE APIs and docs

WHO HAS HEARD OF NEXMO??

OAS is about improving all aspects of Developer Experience

APIs are the engine of modern
software development

API descriptions power up our API
workflows

@lornajane

We glue together our applications with our other modular applications as well as third-party apps

Spec-First API Design

@lornajane

Compare with docs-first API design

Tell a story about needing a holiday let availability API - yesterday

Cheaper to change a spec than rebuild a system

Involve all your stakeholders. Engineering/Product/Docs can all contribute and understand what we've made. No leaving engineers unsupervised and hoping

New APIs or Existing Ones?

@lornajane

New APIs or Existing Ones?

Yes!

@lornajane

It's not easy to retrofit but still totally worth it

API Description Languages
• API Blueprint from Apiary
• RAML from Mulesoft (who also now support OpenAPI)
• OpenAPI is an open standard, and is used in this talk

• "The standard formerly known as Swagger"

@lornajane

I trust these people and organisations (inc Microsoft, API Evangelist, Paypal ...)

OAS will be to modern APIs what WSDL was for SOAP (give some context on that)

OpenAPI Descriptions

WARNING may contain YAML

@lornajane

The spec can describe many different aspects of the API, let's look at a few different bits

Examples are from one of our APIs: Number Insight lets you look up a phone number and check it exists, there are different levels of cost/detail combinations

HANG ON TO YOUR HATS, 5 slides of yaml incoming ...

MetaData
openapi: 3.0.0
servers:
 - url: 'https://api.nexmo.com/ni'
info:
 title: Number Insight API
 version: 1.0.4
 description: Nexmo's Number Insight API delivers real-time intelligence ...
 contact:
 name: Nexmo DevRel
 email: devrel@nexmo.com
 url: 'https://developer.nexmo.com/'
 termsOfService: 'https://www.nexmo.com/terms-of-use'
 license:
 name: 'The MIT License (MIT)'
 url: 'https://opensource.org/licenses/MIT'

@lornajane

This is metadata. Some renderings/tools don't actually use it

DO NOT WRITE IT OFF

This is discoverability of new APIs to use and integrate with in the future. There will be directory services.

Take the time, express the purpose well

Endpoints in OpenAPI Spec
paths:
 '/basic/{format}':
 get:
 operationId: getNumberInsightBasic

 '/standard/{format}':
 get:
 operationId: getNumberInsightStandard

 '/advanced/async/{format}':
 get:
 operationId: getNumberInsightAsync

 '/advanced/{format}':
 get:
 operationId: getNumberInsightAdvanced

@lornajane

Each endpoint gets an entry (these are collapsed) so you can quickly see what is in this API

There are summary and description fields as well, more info about what this endpoint does and is for

Also at this level: parameters, responses and callbacks. Let's start with parameters...

Parameters and Responses
parameters:
 - $ref: '#/components/parameters/format'
 - $ref: '#/components/parameters/number'
 - $ref: '#/components/parameters/country'

responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/niResponseJsonBasic'
 text/xml:
 schema:
 $ref: '#/components/schemas/niResponseXmlBasic'

@lornajane

Removed the description fields so it would fit on the slide, sorry!

Let's look at that format parameter, the ref points to another location in the doc (or a referenced file)

Responses have Status codes, payloads, and data formats. Docs tools will render example fields or you can supply whole response examples

OpenAPI $ref Feature
(Re)Use any block. For example the format parameter:
components:
 parameters:
 format:
 name: format
 in: path
 required: true
 description: 'The format of the response'
 example: json
 schema:
 type: string
 enum:
 - 'json'
 - 'xml'

@lornajane

This is the first section of the components/parameters block. We use this instead of copying the same definition everywhere.

That's a lot of YAML ...

@lornajane

How to Edit OpenAPI Specs
Option 1: your usual editor (this is https://atom.io)

@lornajane

https://atom.io
VSCode (yes I use vim), get an OpenAPI plugin or just yaml linting

You already know how to do it so it's very very easy. Code folding might be useful!

Text-Based API Descriptions

@lornajane

Yes I just told a room full of pretty serious technical people to use source control. Sorry, not sorry.

How to Edit OpenAPI Specs
Option 2: specialist tool https://stoplight.io/studio/

@lornajane

https://stoplight.io/studio/
Stoplight offer a free studio tool with web and desktop options

Validation is built in, using Spectral

Absolutely friendly to non-technical people, ideal for product people (as well as us!)

Validate and Check Style
Spectral https://github.com/stoplightio/spectral

Pick-and-mix the rules, and sprinkle in a few of your own!

@lornajane

https://github.com/stoplightio/spectral
Opinonated but in a good way!

Use locally and in CI - we have it on PR and it's fantastic

The custom rules check styles as well as checking validity, we can write our own rules to match our styles

The (ever-improving) tooling makes OpenAPI compelling and really makes it easier to work with than first impressions might imply

Even the machines can understand ...
now what?

@lornajane

The machines can do so much with a machine-readable spec! Here are my favourites

Generate Documentation
Use your OpenAPI spec as the source for your API reference
documentation

• A choice of tools
• Separate content and presentation
• The spec supports and encourages examples

@lornajane

Docs Example: ReDoc

@lornajane

Rendered using ReDoc (and Speccy)

It is standard! I use this while I'm spec-ing regardless of the eventual renderer

Docs Example: Nexmo

@lornajane

Rendered on Nexmo Developer Portal

Explore APIs with Postman

@lornajane

Look out for downloadable OpenAPI specs (always publish them) as a super fast getting-started feature

As a consumer of APIs, I love this for speed of evaluation when I'm at research stage

OpenAPI Spec To Mock Server
Prism is a mock server https://stoplight.io/prism/

@lornajane

https://stoplight.io/prism/
This is great for: making sure things work the same against a spec-API as they do against the real thing

Useful for when a new feature (or the whole API) isn't live yet

Generated Code Libraries
This example is from OpenAPI Generator
https://github.com/OpenAPITools/openapi-generator

docker run --rm -v ${PWD}:/local \
openapitools/openapi-generator-cli generate
-i number-insight.yml -g php -o /local/out/php

@lornajane

https://github.com/OpenAPITools/openapi-generator

Generated Code Libraries
To use it:
 1 require_once('out/php/vendor/autoload.php');
 2 // copy code from README, set API key and secret
 3
 4 $apiInstance = new OpenAPI\Client\Api\DefaultApi(
 5 new GuzzleHttp\Client(), $config);
 6 $format = "json";
 7 $number = "447700900000";
 8 try {
 9 $result = $apiInstance->getNumberInsightBasic($format, $number);
10 print_r($result);
11 } catch (Exception $e) {
12 echo 'Exception when calling DefaultApi->getNumberInsightBasic';
13 }

@lornajane

Usage info in README, just generate code, copy from there, and run with it

One-off task to generate tools (we're still evaluating this one, our current libs don't use it)

Finding Tools
https://openapi.tools - a community listing

@lornajane

https://openapi.tools
GitHub project, frequent updates so keep on checking

OpenAPI: Brave New World

@lornajane

Modern APIs, machines doing the heavy lifting. Agile, iterating, accurate

Resources
• https://developer.nexmo.com
• https://openapis.org
• https://stoplight.io (Studio, Prism and Spectral)
• https://github.com/Nexmo/nexmo-oas-renderer
• https://github.com/Redocly/redoc
• https://openapi.tools

@lornajane

https://developer.nexmo.com
https://openapis.org
https://stoplight.io
https://github.com/Nexmo/nexmo-oas-renderer
https://github.com/Redocly/redoc
https://openapi.tools

@lornajane

	API Description Languages
	OpenAPI Descriptions
	MetaData
	Endpoints in OpenAPI Spec
	Parameters and Responses
	OpenAPI $ref Feature
	How to Edit OpenAPI Specs
	Text-Based API Descriptions
	How to Edit OpenAPI Specs
	Validate and Check Style
	Generate Documentation
	Docs Example: ReDoc
	Docs Example: Nexmo
	Explore APIs with Postman
	OpenAPI Spec To Mock Server
	Generated Code Libraries
	Generated Code Libraries
	Finding Tools
	OpenAPI: Brave New World
	Resources

