Make Your Data

FABulous

Philipp Krenn

(@xeraa

@ elastic

Developer I

@elastic

ViennaDB
Papers We Love Vienna

@elastic

What is the perfect
datastore solution?

It depends...

Pick your tradeoffs

CAP Theorem

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch®
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model.

Consistent

"[...] a total order on all operations such
that each operation looks as if it were
completed at a single instant.”

Available

"[...] every request received by a non-
failing node in the system must result in a
response.”

Partition Tolerant

"[...] the network will be allowed to lose
arbitrarily many messages sent from one
node to another.”

Partition
Tolerance

Availability

https://berb.github.io/diploma-thesis/original/061_challenge.html

https://berb.github.io/diploma-thesis/original/061_challenge.html

Misconceptions

Partition Tolerance is not a choice in a
distributed system

Misconceptions

Consistency in ACID is a predicate

Consistency in CAP is a linear order

/dev/null breaks CAP: effect of
write are always consistent,
it's always available, and all
replicas are consistent even

during partitions.

@ elastic

https://twitter.com/ashic/status/591511683987701760

FAB Theory

Fast

Near real-time instead of batch processing

Accurate

Exact instead of approximate results

Big

Parallelization needed to handle the data

Say Big Data

O
q] ’ R‘I/
o/
-)
/ ‘
5

one more tinie

Accurate ?

@elastic

_

elasticsearch

Shard

Unit of scale

. A d “ of . ..|
.~ . ~ . - - - . - - |
B ’J?JO‘ c.'JE,"'. > a7 E -
y) : . - :
. . .’ .' - - *f(\‘- .’ . » 'ﬁ‘ :

"The evil W|zard Mondam had attempted
to gain control over Sosaria by trapping its
essence in a-crystal. When the Stranger at
the end of Ultima | defeated Mondain and

shattered the crystal; the crystal shards
each held a refracted copy of Sosaria.

.f:: http] [www raphkoster comIZOO9IO1Iosldatabase-shardmg_ '
VNS NN N A e came-from uo/

— . : . . ™ ! "8 - . - " 3 . _—
: i -

-
. l
. _ .) . pn . e e Y N e Y
. - * . - " ., - * . :
o fo ,,
. ~ . o - L)
. - p % - .
elastic
. " . o . . s O & . - . - s
_— - o - ST ») - » . »
. . . : . .
h L A - ¥ y g AN e L . ¥ . N Oy .) w . SN '
: e ~ ¥y : 7 ¢
. - . - . » - » - - »

http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/

Terms
Aggregation

Word Count Word Count

Luke 64 Droid 13

R2 31 3PO13
Alderaan 20 Princess 12
Kenobi 19 Ben 11
Obi-Wan 18 Vader 11
Droids 16 Han 10
Blast 15 Jedi 10
Imperial 15 Sandpeople 10

PUT starwars

{

"sett1
"num
"num

}

}

ngs": {
per of shards": 5,

per_of _replicas": 0

o s W s Y st W s WY autenn W s WY ot W st
[J
[J

"1ndex"
"word"
"Index"
"word"
"Index"
"word"
"Index"
"word"

{ " index"
"Luke" }
{ " _index"

"Luke" }

{ " _index"

"Luke" }

{ " index"

"Luke" }

"starwars", " _type"
"starwars”, " type"
"starwars”, " type"
"starwars”, " type"

"_dOC"’
"_dOC"’
"_dOC"’

"_dOC" ,

"routing":
"routing":
"routing":

"routing":

IIGII

II1II

ll2|l

l|3|l

I
bk
Pk
I

Visualize / New Visualization (unsaved) Save Share Refresh

Search... (e.g. status:200 AND extension:PHP) Uses lucene query syntax n
Add a filter 4
starwars
Data Options > B

Metrics

n Tag Size Count “an B

vader
ouckers Alderaan
3P0

8 Droid
Aggregation o
Terms - Imnerlal Blast
Field — o
word keywort . Kenobi R2 Droids
Order By i = i

ledi Ohi-Wan Princess

metric: Count

Order sze sandpeople

Descending ¥ 25

<>

Group other values in separate bucket i

Show missing values (1]

Fasbarmas | ablaal

GET starwars/ search

"took": 6,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

I

"hits": {
"total": 64,
"max_score": 3.2049506,
"hits": [

{

_1ndex": "starwars",
_type": " _doc",
" 1d": "OvVvdy2IBkmPuaFRg659y",
" score": 3.2049506,
" routing": "1",
_source": {
"word": "Luke"

}
b

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"s1ze": 1

"took": 13,
"timed out": false,
" shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": ©

I
"hits": {

"total": 288,

"max_score": 0,

"hits": []

Ik
"aggregations": {

"most_common": {
"doc_count_error_upper_bound": 10,
"sum_other_doc_count": 232,
"buckets": [

{
"key": "Luke",
"doc_count": 56

~ A A A

o [t W s WY st WY et WY e W s W e W s W
[J [J
[J

"Index"
"word"
"Index"
"word"
"Index"
"word"

"Index"
"word"
"Index"
"word"
"Index"
"word"
"Index"
"word"

{ " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }

{1 " _index" : "starwars", " type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }
: 1 " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }

@ elastic

"_dOC" ,
"_dOC" .

"_dOC" ,

"_dOC"’
"_dOC"’
"_dOC"’

Il_dOCII ,

"routing":
"routing":

"routing":

"routing":
"routing":
"routing":

"routing":

IIOII

lllll

l|2|l

l|8ll

ll9ll

ll@ll

ll@ll

shard#

Routing

hash(_routing) %

#primary_shards

GET _cat/shards?index=starwarsé&v

1ndex

starwars
starwars
starwars
starwars
starwars

shard

O L N B W

orirep s
D S
D ST
D ST
D S
D ST

tate

A

A
A
TA
A

RTE
RTE
RTE
RTE

RTE

o U U U U

docs

58
26
/1
63
70

1p
172
172

172.

172
172

.19,
.19,
19.
.19.
.19,

OB ONOBONOC,
N N DNDNDN

node

Q88C3vO0
Q88C3vO0
Q88C3vO0
Q88C3vO0
Q88C3vO0

(Sub) Results Per Shard

shard size = (size * 1.5 + 10)

How Many?

Results per shard
Results for aggregation

"doc_count_error_upper_bound": 10

"sum other doc count": 232

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"si1ze": 1,
"show term doc count error": true
}
}
3
"si1ze": 0O
}

"aggregations": {

"most common": {
"doc_count_error_upper_bound": 10,
"sum other doc count": 232,
"buckets": [

{
"key": "Luke",
"doc count": 56,
"doc_count_error_upper_bound": 9
}

]
}
}

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"si1ze": 1,
"shard size": 20,
"show term doc count error": true
}
}
3
"s1ze": 0O
}

"aggregations": {

"most common": {
"doc_count_error_upper_bound": 0,
"sum other doc count": 224,
"buckets": [

{
"key": "Luke",
"doc count": 64,
"doc_count_error_upper_bound": ©
}

]
}
}

Cardinality
Aggregation

Naive implementation: Hash set

Predictable storage and performance?

HyperLoglLog in Practice: Algorithmic Engineering of a
State of The Art Cardinality Estimation Algorithm

Stefan Heule
ETH Zurich and Google, Inc.

stheule@ethz.ch

Marc Nunkesser
Google, Inc.

marcnunkesser

Alexander Hall
Google, Inc.

alexhall@google.com

@google.com

ABSTRACT

Cardinality estimation has a wide range of applications and
is of particular importance in database systems. Various
algorithms have been proposed in the past, and the HY-
PERLOGLOG algorithm is one of them. In this paper, we
present a series of improvements to this algorithm that re-
duce its memory requirements and significantly increase its
accuracy for an important range of cardinalities. We have
implemented our proposed algorithm for a system at Google
and evaluated it empirically, comparing it to the original
HYPERLOGLOG algorithm. Like HYPERLOGLOG, our im-
proved algorithm parallelizes perfectly and computes the
cardinality estimate in a single pass.

timate significantly for a range of important cardinalities.
We evaluate all improvements empirically and compare with
the HYPERLOGLOG algorithm from [7]. Our changes to the
algorithm are generally applicable and not specific to our
system. Like HYPERLOGLOG, our proposed improved al-
gorithm parallelizes perfectly and computes the cardinality
estimate in a single pass.

QOutline. The remainder of this paper is organized as fol-
lows; we first justify our algorithm choice and summarize
related work in Section 2. In Section 3 we give background
information on our practical use cases at Google and list

VI P S B A (- [Y T Y T I [P B JE. S

[...] the maximum number of leading zeros
that occur for all hash values, where
intuitively hash values with more leading
zeros are less likely and indicate a larger
cardinality.

If the bit pattern 0" ' 1 is observed at the
beginning of a hash value, then a good
estimation of the size of the multiset is 2"

To reduce the large variability that such a
single measurement has, a technique
known as stochastic averaging is used.

GET starwars/ search

{
"aggs": 1
"type _count": {
"cardinality": f{
"field": "word.keyword",
"precision_threshold": 10
}
;
3
"size": 0O
;

"took": 3,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

I s

"hits": {
"total": 288,
"max_score": 0,
"hits": []

I s

"aggregations": {
"type_count": {

"value": 17

}

}

precision_threshold
Default 3,000
Maximum 40,000

Memory

precision_threshold x 8 bytes

Cardinality error

threshold=100 ———
threshold=1000 — .
th(eshold=10000 _—

)
o~
—
—
)
—
—
@
@
=
©
@
s

100000
Actua cardinality

GET starwars/ search

{
"aggs": 1
"type _count": {
"cardinality": f{
"field": "word.keyword",
"precision_threshold": 12
}
;
3
"size": 0O
;

"took": 12,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

I s

"hits": {
"total": 288,
"max_score": 0,
"hits": []

I s

"aggregations": {
"type_count": {

"value": 16

}

}

Precompute Hashes?

Client or mapper-murmur3 plugin

It Depends
= large / high-cardinality fields

" low cardinality / numeric fields

Improvement: LogLog-f3

vy

https://github.com/elastic/elasticsearch/pull/22323#issuecomment-314782891
https://github.com/elastic/elasticsearch/pull/22323#issuecomment-314782891

Improvement?

"New cardinality estimation algorithms for
HyperLogLog sketches"

https://arxiv.org/abs/1702.01284

@elastic

https://arxiv.org/abs/1702.01284

inverse
Document
rrequency

GET starwars/ search

_1ndex": "starwars",
_type": " _doc",
"_1d": "Ovvdy2IBkmPuaFRg659y",
" score": 3.2049506,
" _routing": "1",
_source": {
"word": "Luke"

}
I
{
" 1ndex": "starwars",
" _type": " _doc",
" id": "2PVdy2IBkmPuaFRg659y",
" score": 3.2049506,
" _routing": "7",
" source": {
"word": "Luke"
}
I s
{
" index": "starwars",
" _type": " _doc",
" 1d": "O_Vdy2IBkmPuaFRg659y",
" score": 3.1994843,
" _routing": "2",
" source": {
"word": "Luke"
}
I s

Term Frequency /
Inverse Document
Frequency (TF/IDF)

@elastic

BM25

Default in Elasticsearch 5.0

Term Frequency
tf(t in d) = \/Frequency

10

15

TF-IDF

BM25

Inverse Document
Frequency

numbDocs
docFreq + 1

tdf(t) =1+ log()

3.5
3.0

2.5

2.0
1.5

1.0

0.5

200

600

800

TF-IDF

BM25
1000

Field-Length Norm

|
vnumlerms

norm(d) =

Query Then Fetch

CLUSTER

NODE 1 - * MASTER

CLUSTER

NODE 1 - * MASTER

DFS Query Then Fetch

Distributed Frequency Search

GET starwars/ _search?search_type=dfs_query then fetch
{

{

;1

_1ndex": "starwars",
_type": "_doc",
"_1d": "0fVdy2IBkmPuaFRg659y",
" score": 1.5367417,
" routing": "0",
_source": {
"word": "Luke"

}

I s

{
" index": "starwars",
" type": " _doc",
"_1d": "2_Vdy2IBkmPuaFRg659y",
" score": 1.5367417,
" routing": "0",
" source": {

"word": "Luke"

}

I s

{
" index": "starwars",
" type": " _doc",
"_1d": "3PVdy2IBkmPuaFRg659y",
" score": 1.5367417,
" _routing": "O",
" source": {

"word": "Luke"

}

I ;

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions

Don’t use
dfs_query then_fetch

in productlon. It really
isn't required.

https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-is-broken.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-is-broken.html

Single Shard

Defaultin7.0

Simon Says

Use a single shard until
it blows up

PUT starwars/ settings
{
"settings": {
"1ndex.blocks.write": true
}
}

POST starwars/_shrink/starletwars?copy_settings=true
{
{
1,
0

GET starletwars/ search

{
"query": {
"match": {
"word": "Luke"

}
b

" source": false

}

b

_1ndex": "starletwars",
_type": " _doc",

~1d": "O0fVdy2IBkmPuaFRg659y",
_score": 1.5367417,

_routing": "O"
_1ndex": "starletwars",
_typell: "_dOC"’

_1d": "2_Vdy2IBkmPuaFRg659y",
_score": 1.5367417,

_routing": "0"
_1ndex": "starletwars",
_type": "_doc",

~1d": "3PvVdy2IBkmPuaFRg659y",
_score": 1.5367417,
_routing": "O"

GET starletwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"s1ze": 1

"took": 1,
"timed out": false,
" shards": {

"total": 1,

"successful": 1,

"skipped": 0,

"failed": ©

I
"hits": {

"total": 288,

"max_score": 0,

"hits": []

Ik
"aggregations": {

"most_common": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 224,
"buckets": [

{
"key": "Luke",
"doc_count": 64

Change for the
Cardinality Count?

Conclusion

Tradeoffs...

Consistent Available
Partition Tolerant

Fast Accurate Big

@elastic

Questions?

Philipp Krenn @xeraa

PS: Stickers

@elastic

