

RRRRRRRRRRR

@BRWNGRLDEV

—— USA

RRRRRRRRRRR

GETTING A GRIP
ON GRAPH(L

@BRWNGRLDEV

RRRRRRRRRRR

RRRRRRRRRRR

RRRRRRRRRRR

2 Basics
& Server

RRRRRRRRRRR

AGENDA

(JBasics
& Server
Client

RRRRRRRRRRR

RRRRRRRRRRR

GraphQL s..

A QUERY LANGUAGE

FOR YOUR AP|

RRRRRRRRRRR

SELECT name FROM users

RRRRRRRRRRR

SELECT name FROM users

— o — e

RRRRRRRRRRR

RRRRRRRRRRR

@BRWNGRLDEV

data class UF0Sighting(
var 1d: Int,
var date: LocalDate,
var city: String?,
var state: String?,
var country: String?,
var shape: String?,
var duration:)
var comments: String?,
var latitude:)
var longitude:

@BRWNGRLDEV

query AllSightings <
sightings <
id
shape
}
}

@BRWNGRLDEV

WUeryl A11Sightings {

sightings <
1d
shape
}
}

@BRWNGRLDEV

query JALISIGhEINGS] {

sightings {
id
shape
}
}

@BRWNGRLDEV

query AllSightings {
SHNENGE |
1d
shape

L
L

@BRWNGRLDEV

query AllSightings {
sightings {

L
L

@BRWNGRLDEV

query AllSightings 1
sightings A
id
shape
}
}

@BRWNGRLDEV

query AllSightings {
sightings {
1d

shape ~ TTTTTTTTTTTTTTTTTTTTTTO >
+
+
{ E
“data” : { :
“sightings” : | .
{ :
“id” 1, L .
“shape” : “circle” <
+

]
}
}

@BRWNGRLDEV

{
“data” : {
“sightings” : |
{
“1d” 1,
“shape” : “circle”
}
]
}
}

@BRWNGRLDEV

{
“data” : {
“sightings” : [
{
“1d” 1,
“shape” : “circle”
s
]
}
}

RRRRRRRRRRR

RRRRRRRRRRR

GET

GET

mutation

POST
PUT
PATCH
DELETE

RRRRRRRRRRR

@BRWNGRLDEV

@BRWNGRLDEV

@BRWNGRLDEV

@BRWNGRLDEV

@BRWNGRLDEV

RRRRRRRRRRR

GraphQL s..

A SPECIFICATION

@BRWNGRLDEV
W

(® facebook.github.io/graphal/draft/#sec-Language.

O
(

1 Overview
GraphQL

GraphQL is a query language designed to build client applications by providing an intuitive and

flexible syntax and system for describing their data requirements and interactions. R

2 Language

For example, this GraphQL request will receive the name of the user with id 4 from the Facebook 3 Type System

implementation of GraphQL. 4 Introspection
5 Validation

6 Execution

7 Response
user(id: 4) A Appendix: Notation Conventions
name B Appendix: Grammar Summary
§ Index

Which produces the resulting data (in JSON):

"user":
"name”: "Mark Zuckerberg”

RRRRRRRRRRR

@BRWNGRLDEV

RRRRRRRRRRR

RRRRRRRRRRR

RRRRRRRRRRR

GraphQL s..

INTROSPECTIVE

@BRWNGRLDEV

query {
__type(name: "UF0Sighting") {
fields {

name
¥

¥
¥

@BRWNGRLDEV

query A
__type(name: "UF0Sighting")
fields A
name

h
L
L

@BRWNGRLDEV

query {
__type(name: "UF0Sighting") {

L
L

@BRWNGRLDEV

Default (http://localhost:8080/graphgl) v b

query {
__type(name: "UF0Sighting") {
fields {|
name
}
+
+

= 6: Logcat ¥ 9: Version Control Terminal & GraphQL

RRRRRRRRRRR

araphQL s..

a query language
a specification
iIntrospective

RRRRRRRRRRR

WHAT?!

RRRRRRRRRRR

[UFO-SIGHTINGS

"ID": 9298,

"LONGITUDE": 145.722595,
"LATITUDE": -38.626591,

IISTATEII: IIII’

"COUNTRY": "AU",

"SHAPE": "LIGHT",

"COMMENTS": "BRIGHT ORANGE LIGHT”

"ID": 9297,
"LONGITUDE": -90.0488889,
"LATITUDE": 35.1494444,

"STATE": "TN",

"COUNTRY": "US",

"SHAPE": "RECTANGLE",

"COMMENTS": "STANDING AT MY WINDOW”

"ID": 9287,

"LONGITUDE": -3.1,

"LATITUDE": 53.316667,

"STATE"™: "YT",

"COUNTRY": "GB",

"SHAPE": "TRIANGLE",

"COMMENTS": " ((HOAX??)) LONG TRIANGLE OBJECT”

@BRWNGRLDEV

v {
sighting(id: 9297) + "data”: {
1d v "sighting”: {
shape "1d": 9297,
country "shape”: "rectangle”,
Nusn

} "country”:

query { v {
sightings(size: 2) { "data”: {
id "sightings”: [
shape {
) "id": 9297,
"shape”: "rectangle”
topCountrySightings { b
country {
numOccurrences "1d": 9298,
} "shape”: "light”
} }
1

"topCountrySightings”: [
{
"country”: "US",
"numOccurrences”: 8021

¥
{

"COuntry": ”N,
"numOccurrences”: 860

¥
{

"country”: "CA",
QUERY VARIABLES "numOccurrences”: 293

@BRWNGRLDEV

FIELDS

sightings(size: Int = 10): [UFOSighting!]!

Returns a subset of the UFO Sighting records

sighting(id: Int!): UFOSighting!

Returns a single UFO Sighting record based on ...

topSightings: [CountrySightings!]!

Returns a list of the top 10 state,country based ...

topCountrySightings: [CountrySightingsl]!

Returns a list of the top 10 countries based on t...

@BRWNGRLDEV

RRRRRRRRRRR

RRRRRRRRRRR

Single Endpoint

/graphal

RRRRRRRRRRR

HTTP GET
/IGRAPHQL?QUERY=<QUERY>

—‘

RRRRRRRRRRR

HTTP GET
/IGRAPHQL?QUERY=<QUERY>

A
i

ll{
sightings <
1d
shape
}
}"

RRRRRRRRRRR

HTTP POST
/GRAPHQL
T T T e

RRRRRRRRRRR

HTTP POST

/GRAPHQL
{
“guery” : ‘A

sightings {
id
shape

}

}H

@BRWNGRLDEV

http://localhost:8080/graphql Params

(1) Body @

form-data x-www-form-urlencoded ® raw binary

1~ {"query" : "query {

v sightings(size: 2) {
id
shape

}

U B W IN

}r
}

O

@BRWNGRLDEV

Postman

http://localhost:8080/graphq|

(1) Body @

form-data x-www-form-urlencoded @ raw binary

1~ {"query" : "query AllSightings($size: Int) {
2 ~ sightings(size: $size) {

1d

shape

¥

"
b

"variables" : {
"si1ze" : 2

RRRRRRRRRRR

BUILDING OUR
SERVER

@BRWNGRLDEV

Ktor — Server Framework

Ktor — Server Framework

Koin — Dependency Injection

RRRRRRRRRRR

Ktor — Server Framework
Koin — Dependency Injection

Squash — Database Access

RRRRRRRRRRR

Ktor — Server Framework
Koin — Dependency Injection
Squash — Database Access

KGraphQL — GraphQL Support

RRRRRRRRRRR

GraphQL Server...

Types
Schema
Resolvers

m o X XX o 0O = O

SSHNASVZUYCJHM
IWPXO0ODCBQQGLFT
PBUHZIBAUMAAQSYV
OWGYFMTELMAHTEFH
EVLOSERAEATPIR
FSRRSYNHTPRAEJ]
BJECTSCULUDRLP
PYTLOSXLUBMGD X

@BRWNGRLDEV

@BRWNGRLDEV

CSSHNASVZUYCJHM
NIWPXODCBQQGLFT
CPBUHZIBAUMAQSYV
QOWGYFMTELMAHTEFH
REVLOSERAEATPIR
KFSRRSYNHTPRAE]
OBJECTSCULUDRLP

EPYT LOSXLUBMGD X

RRRRRRRRRRR

type UF0OSighting {
1d: Int'!
city: String

RRRRRRRRRRR

@BRWNGRLDEV

type UFO0Sighting {
1d: Int!
city: String

{
sightings {
id 1
277
}

city
¥
¥

@BRWNGRLDEV

type UFO0Sighting {
id: Int! %
city: String fy
| %
: : 4
1

S

RRRRRRRRRRR

type<UF0S1ighting>

RRRRRRRRRRR

type<UF0Si1ghting>

data class UF0Sighting(
var 1d: Int = -1,
var city: String? = "",

)

RRRRRRRRRRR

type<UF0S1ghting>

data class UF0Sighting(

var
Var — IIII’

)

@BRWNGRLDEV

type<UF0S1ighting>
yP : : type UF0Sighting {
| | : 1d: Int!
data class UF0Sighting(: city: String
var id: Int = -1,)

var city: String? = ’

)

@BRWNGRLDEV

CSSHNASVZUYCJHM
NIWPXODCBQQGLFT
CPBUHZIBAUMAQ SV
QOWGYFMTELMAHTFH
R
J
p

REVLOSERAMEATPI
KFSRRSYN P RAE
OB JECTS L UDRL
EPYTLDO LUBMGD X

@BRWNGRLDEV

schema {
query: Query
}

@BRWNGRLDEV

type Query {
sighting(id: Int): UF0Sighting
}

schema A
query: Query
}

@BRWNGRLDEV

type UF0Sighting {
1id: Int!
city: String

¥

type Query {
sighting(id: Int): UFO0Sighting
}

schema {

query: Query
}

@BRWNGRLDEV

RRRRRRRRRRR

KGraphQL.schema <

RRRRRRRRRRR

KGraphQL.schema A

type<UFO0S1ighting>

RRRRRRRRRRR

KGraphQL.schema A
type<UFO0S1ighting>

query("sighting") {
resolver { id: Int —> ..}
}

@BRWNGRLDEV

CSSHNASVZUYCIJIHM
NIWPXODCBQQGLFT
CPBUHZIBAUMAQSYV
QOWGYFMTELMAHEFH
REVLECOSERAEATPIR
KFSRRSYNHTPRAE]]
0OBJECTSCULUDRLEP
EPYTLOSXLUBMGD X

RRRRRRRRRRR

Resolver

query("sighting") {
resolver { id: Int —
storage.getSighting(id)
}
}

RRRRRRRRRRR

Resolver

query("sighting") {
resolver { id: Int —>
“http://sightings/$id".httpGet ()
t

h

@BRWNGRLDEV

sighting(id: 45) {
id
shape
user 1
id
name
}
}
}

@BRWNGRLDEV

{ * Root Query
sighting(id: 45) { :
1d v
shape
user 1 —
1d
name

@BRWNGRLDEV

{
sighting(id: 45) {

user <
1d

Name
} circle

v
)
4 i N
N : '
’ i
4 v <

345

@BRWNGRLDEV

{
sighting(id: 45) {
id
shape

user {

1d
name

h

@BRWNGRLDEV

Resolver - Mutation

mutation('"createUF0Sighting") {
description = "Adds a new UFO Sighting”

@BRWNGRLDEV

Resolver - Mutation

mutation("createUF0Sighting") {
description = "Adds a new UFO Sighting”

resolver { input: CreateUF0SightingInput —>
storage.createSighting(input..)

h
h

@BRWNGRLDEV

Resolver - schema.json

"kind": "OBJECT",

"name": "Mutation",
"description": "Mutation object",
"fields": [
{
"name": "createUF0Sighting",
"description”: "Adds a new UFO Sighting to the database",
Ilargsll: [
{
"name": "input",
"description": null,
"type": {

""kind": "NON_NULL",

"name" : null,

"ofType": {
"kind": "INPUT OBJECT",
"name": "CreateUF0SightingInput”,
"ofType": null

}

@BRWNGRLDEV

/eraphgl Endpoint

fun Route.graphql(..) {
post<GraphQLRequest> A
val request = call.receive<GraphQLRequest>()

val query = request.query
val variables = gson.toJson(request.variables)

val result = schema.execute(query, variables)
call.respondText(result)

h
h

@BRWNGRLDEV

/eraphgl Endpoint

fun Route.graphgl(..) {
post<GraphQLRequest> A
val request = call.receive<GraphQLRequest>()

val query = request.query
val variables = gson.toJson(request.variables)

val result = schema.execute(query, variables)
call.respondText(result)

h
h

RRRRRRRRRRR

resolvers

schema

RRRRRRRRRRR

UFO Sightings

B .

\{

Black huge wobbling object
disk shape going across sky in
clouds

2014-05-07

((HOAX??)) Long triangle
object moves with speed
upwards.

2014-05-07

Orange/red sphere with blue or
green outline or ring. Moved
very slowly to the west then
disappeared.

2014-05-07

((HOAX)) ((NUFORC Note:
No information provided by +
source. Source does not

Sample Application

@BRWNGRLDEV

UFO Sightings

B .

\{

Black huge wobbling object
disk shape going across sky in
clouds

2014-05-07

((HOAX??)) Long triangle
object moves with speed
upwards.

2014-05-07

Orange/red sphere with blue or
green outline or ring. Moved
very slowly to the west then
disappeared.

2014-05-07

((HOAX)) ((NUFORC Note:
No information provided by +
source. Source does not

Sample Application
KOTLIN

@BRWNGRLDEV

RRRRRRRRRRR

Add Sighting

Sample Application

KOTLIN
ARCHITECTURE COMPONENTS

0000000

Circle

mmmmmmmm

RRRRRRRRRRR

Add Sighting

Sample Application

KOTLIN
ARCHITECTURE COMPONENTS
APOLLO ANDROID

0000000

Circle

mmmmmmmm

RRRRRRRRRRR

GraphQL Client...

Apollo Client
Schema
grapnhgl Files

@BRWNGRLDEV

Apolio Client

ApolloClient.builder()
.serverUrl(BASE_URL)
. okHttpClient(okHttpClient)
build()

RRRRRRRRRRR

Apollo Client

ApolloClient.builder()

.build()

@BRWNGRLDEV

apollo-codegen download-schema

v B main
v BEgraphgl
v Mminfo
v I adavis
v Bmufosightings
= schema.json

@BRWNGRLDEV

Schema
{

"data":
" schema": {
"queryType": {
"name”: "Query"”
},
"mutationType": {
"name”: "Mutation”
},
"subscriptionType”: null,
"types": |
{
"kind": "OBJECT",
"name”: "UFO0Sighting",

HAdAarmrmcnvmamdaanlil. ILA IICN s~ ca i q oia il

graph Fle

[£ SightingsQuery.graphgl -
‘e Default (http://localhost:8080/graphql) v p

query SightingsQuery($size: Int) {
sightings(size: $size) {
1d
date
shape]
comments
}
}

RRRRRRRRRRR

graphql File

RRRRRRRRRRR

graphql File

i-@

RRRRRRRRRRR

graphql File

@BRWNGRLDEV

v ™ = SightingsQuery

» %9 = Builder

» $9 = Variables

» & & Data

> & = Sighting
@ = SightingsQuery(Input<Long>)
@ = operationld(): String TOperation
@ = queryDocument(): String TOperation
@ = wrapData(Data): Data TOperation
@ © variables(): Variables TOperation
@ = responseFieldMapper(): ResponseFieldMapper<Data> TOperatio
& = builder(): Builder
@ = name(): OperationName TOperation

@BRWNGRLDEV

Generated Code...

public static final class Builder {
private Input<Long> size = Input.absent();

Builder() {

i
R

public Builder size(@Nullable Long size) {

this.size = Input.fromNullable(size);

return this;
s
public Builder sizeInput(@onnull Input<Long> size) {

this.size = Utils.checkNotNull(size, errorMessage:'"size == null"):

return this;

}

public SightingsQuery build() { return new SightingsQuery(size); }

Apollo Client
Schema

.graphgl Files

UFO Sightings

B

\{

Black huge wobbling object
disk shape going across sky in
clouds

2014-05-07

((HOAX??)) Long triangle
object moves with speed
upwards.

2014-05-07

Orange/red sphere with blue or
green outline or ring. Moved
very slowly to the west then
disappeared.

2014-05-07

((HOAX)) ((NUFORC Note:
No information provided by +
source. Source does not

@BRWNGRLDEV

1. Build our query
2. Enqueue the request
3. Handle the response

UFO Sightings

B

\{

Black huge wobbling object
disk shape going across sky in
clouds

2014-05-07

((HOAX??)) Long triangle
object moves with speed
upwards.

2014-05-07

Orange/red sphere with blue or
green outline or ring. Moved
very slowly to the west then
disappeared.

2014-05-07

((HOAX)) ((NUFORC Note:
No information provided by +
source. Source does not

@BRWNGRLDEV

@BRWNGRLDEV

Build our query

SightingsQuery.builder()
.Size(30)
.build()

RRRRRRRRRRR

tnqueue the request

apolloClient
.query(query)

@BRWNGRLDEV

tnqueue the request

apolloClient
.query(query)
.enqueue(object : Callback<T>() {

})

@BRWNGRLDEV

tnqueue the request

apolloClient
.query(query)
.enqueue(object : Callback<T>() {
fun onResponse(response: Response<T>)

fun onFailure(e: ApolloException)

@BRWNGRLDEV

Handle the response

"data" : {
"sightings" : [1
" _typename" : "UFOSighting",
"1d" : 9297,
"date" : "2014-05-08",
"'shape" : "rectangle",
"'comments" : "Standing at my window one by one."

rol

@BRWNGRLDEV

Handle the response

fun onResponse(response: Response<T>) {
response.data()?.sightings()

// notify your UI
}

@BRWNGRLDEV

UFO Sightings Add Sighting

@, Black huge wobbling object
o> disk shape going across sky in
v clouds

2014-05-07 State

((HOAX??)) Long triangle

object moves with speed Country
upwards.

2014-05-07 Circle
Orange/red sphere with blue or Comments

green outline or ring. Moved
very slowly to the west then
disappeared.

2014-05-07

((HOAX)) ((NUFORC Note:
No information provided by -+ G
source. Source does not

RRRRRRRRRRR

\ TIPS & TRICKS

@BRWNGRLDEV

Intelli) GraphQL Plugin..

[Z SightingsQuery.graphql -
7 Default (http://localhost:8080/graphgl) v P

query SightingsQuery($size: Int) {
sightings(size: $size) {
id
date
shape
comments

H
}

RRRRRRRRRRR

A CLIENT IS
OPTIONAL

@BRWNGRLDEV

Public GraphQL APIs

A collective list of public GraphQL APIs. PRs are welcome ¢z If you are interested in GraphQL in general, check out
awesome-graphql.

Official APIs

API Description GraphiQL Docs/Repo
Brandfolder Digital asset management platform Try it! Repo
Buildkite Continuous integration and deployments Try it! Docs

Infrastructure Data, like realtime facility status, stations, timetables Try it Docs
it!
and more y Repo

Deutsche Bahn

. _ Transit routes and realtime schedules from Helsinki Regional ,
Digitransit HSL , _ Try it! Docs
Transport Authority, Finland

EHRI Holocaust-related archival materials Try it! Docs
EtMDB Ethopian Movie Database Try it! Docs

Gdom DOM Traversing and Scraping using GraphQL Try it! Repo

GraphQL Schema Language Cheat Sheet

The definitive guide to express your GraphQL schema succinctly

What is GraphQL Schema Language?

It is a shorthand notation to succinctly express the
basic shape of your GraphQL schema and its type
system.

What does it look like?

Below is an example of a typical GraphQL schema
expressed in shorthand.

interface Entity {
id: ID!
name: String

}

scalar Url

type User implements Entity {
id: ID!
name: String
age: Int
balance: Float
is_active: Boolean
friends: [User]!
homepage: Url

type Query {

me: User

friends(limit: Int = 10): [User]!
3

input ListUsersInput {
limit: Int
since_id: ID

}

type Mutation {
users(params: ListUsersInput): [User]!
3

schema {
query: Query
mutation: Mutation
subscription:

}

schema GraphQL schema definition
query A read-only fetch operation
mutation A write followed by fetch operation

subscription A subscription operation
(experimental)

Built-in Scalar Types

Int Int
Float Float
String String
Boolean Boolean

ID ID

Type Definitions

scalar Scalar Type
type Object Type
interface Interface Type
union Union Type
enum Enum Type

input Input Object Type

Type Modifiers

Nullable String

Non-null String

List of nullable Strings
Non-null list of nullable Strings

Non-null list of non-null Strings

Input Arguments

Basic Input

type Query {
users(limit:): [User]

Input with default value

type Query {
users(limit: Int = 10): [User]

Input with multiple arguments

type Query {
users(limit: Int, sort: String): [User]

Input with multiple arguments and default values

type Query {
users(limit: Int = 10, sort: String): [User]

}

type Query {
users(limit: Int, sort: Strir

}

type Query {
users(limit: Int = 10, sort: String = "asc"): [User]

Input Types

input ListUsersInput {
limit: Int
since_id: ID

}

type Mutation {

users(params: ListUsersInput): [User]!

}
Custom Scalars

scalar Url

type User {
name: String

homepage: Url

Object implementing one or more Interfaces

interface Foo {
is_foo: Boolean

}

interface Goo {
1s_goo: Boolean

}

type Bar implements Foo {
is_foo: Boolean
is_bar: Boolean

}

type Baz implements Foo, Goo {
is_foo: Boolean
1s_goo: Boolean

is_baz: Boolean

Union of one or more Objects

type Foo {
name: String
}
type Bar {
is_bar: Stri
}
union SingleUnion = Foo
union MultipleUnion = Foo | Bar
type Root {
single: SingleUnion

multiple: MultipleUnion

enum USER_STATE {
NOT_FOUND
ACTIVE
INACTIVE
SUSPENDED
}
type Root {
stateForUser(userID: ID!): USER_STATE!
users(state: USER_STATE, 1limit: Int = 10): [User]

@BRWNGRLDEV

RRRRRRRRRRR

RAPID FIRE

RRRRRRRRRRR

GRAPHQL WAS DESIGNED
FOR GRAPH DATABASES.

RRRRRRRRRRR

GRAPHQL WAS DESIGNED
FOR GRAPH DATABASES.

RRRRRRRRRRR

V

GRAPHQL IS LANGUAGE
AGNOSTIC.

RRRRRRRRRRR

RRRRRRRRRRR

APOLLO ANDROID IS THE
ONLY GRAPHQL CLIENT.

RRRRRRRRRRR

APOLLO ANDROID IS THE
ONLY GRAPHQL CLIENT.

RRRRRRRRRRR

REST IS DEAD.

GETTING A GRIP
ON GRAPHOL

@BRWNGRLDEV

| ADAVIS.INFO

