
From Cloud Naive to Cloud Native
- Avoiding mistakes everyone does
Max Körbächer, Liquid Reply

Say hi!

Photo

Max Körbächer - Co-Founder of Liquid Reply

My work is all about Kubernetes Consultancy & Advisory:

● What configuration/extensions I need?
● How I can make my teams using K8s?
● How do we get our software from local to global?
● What is the best approach to build a managed Kubernetes

cluster like in internal developer platform?
● How do we do Security or Operations on Kubernetes?

mkoerbaecher

mkoerbi

Today we are talking about
something that is difficult to catch
and even more harder to describe

Moving to the Clouds
and becoming cloud native

Taking your steps into the clouds was never so
easy as of today, as person or corporation.

You only need a credit card.

But it is on you, if it will be a one way flight ticket
through the clouds or a new era of cloud native
development .

Old but gold

The Cloud Native Pyramid

Internal Developer Platform
An automated, developer centric,
operations supporting hyper converged
infrastructure. Often a result of
containerization and Kubernetes.

Cloud Native
Mindset/Methodology

Cloud Native isn’t a tool, a process or
an object you can buy. We are talking

about a mindset and a kind of
unformalized methodology.

Infrastructure
The more the infrastructure is
automated (IaaS/CSP) the easier it is,
the easier it is also to miss use it. Don’t
make from a mouse an elephant.

Business Requirement <-> Application Development
Cloud Native is often but not always a good approach. The

same with containers and Kubernetes. But if it fits your Devs
must be ready.

The Cloud Native Pyramid

Internal Developer Platform

Cloud Native
Mindset/Methodology

Infrastructure
The infrastructure is seen as the
biggest problem - costly, complex, and
huge amount of work goes into. Even or
especially with cloud providers.

Business Requirement
<-> Application Development

What the customer see

The Cloud Native Pyramid

 Internal Developer Platform

Cloud Native
Mindset/Methodology

Your company success with the
right mindset, your company fails if

it refuses to change.

And you can’t train or certify a
mindset. It needs to be cultivated.

Disciplines/roles/jobs will mix and
mingle.

Business Requirement <-> Application Development

What we see

Infrastructure

Cloud Based vs
Cloud Native

Cloud NativeCloud Based

Focusing on agnostic runtimes
(containers) and serverlessLeaning towards stateful/sticky workload

Community driven distributed
collaboration & communicationIsolation focused - silos

Heavily automated - event driven native
integration Semi automation - scripting heavy

Fast restarts - data processed securely
but disruptions are expectedSlow restarts - sensitive data handling

Capacity minimization - no overheadCapacity overprovisioning

Misconceptions Observations
You can be the Queen of Cloud Nativeness,

without ever touching a CSP

Companies need to start thinking in
products and not projects

You have to actively guide and consult
your ICT - typically the group of people
understanding cloud native are very
small

Kubernetes is a more dynamic
hypervisor I just put my apps on, as
they are

Kubernetes is two things:
1. A platform to build cross-platform

platforms
2. A system to manage, enrich and

run your applications

Kubernetes is treated as a one time
implementation → build once, hand over
to operations

We hand out some best practices & blue
prints and are enabled to do a mass
migration, so that we are getting cloud
native naive

By design most software is not
build for Kubernetes.

By missing experience &
knowledge many of the green
field implementations are not built
for Kubernetes.

Apps often aren’t
made for Cloud Native

Only 27% of the respondents have ever used K8s,
59% used containers

Around 50% are not interested or never heard of K8s

23% doesn’t know what K8s is used for
-CNCF Cloud Native Dev Report

How to stay on
the Cloud Native

side

Mindset & Strategy

You have to be a brain
surgeon, not a sledge
hammer

01

● Every cloud native shift depends on the mindset - that is something
you can’t train

● Strategic mass migrations towards cloud maybe speed up the
process, but comes on other costs - frustration, knowledge gaps &
wrong usage of cloud resources

● Identify the group of people who are burning for this topics and give
them anything they need

If you want to be a digital company,
you can’t just migrate your
engineering, banking, telco, chemistry,
aerospace (...) capabilities to a cloud.

You only can enhance it that way.

Because, you are not a cloud born
company, like Netflix, Spotify, Uber
and co.

You need to start by 0

The mindset
makes the
difference

To become cloud native

On a shorthand, the hard facts
about $$$ are easy to evaluate

What is never evaluated till the end are the
technical capabilities and if they match
your demand.

Companies even switch cloud providers
because of money, forgetting about that
the costs on the people, the migration and
the knowledge loss can be higher than the
savings.

Companies choose CSP by $$$

Mindset & Strategy

Don’t choose your
cloud provider
because of
money

03
● So many “Strategic Decisions” for a Cloud Provider are taken

because of good contracts - you will not save money if the CSP
doesn’t suits your requirements and the devil lays in the details

Start by 0, but
demand any
resources you can
get

02
● Projects that want to reshape or re-architecture build already on ruins.
● A cloud native journey can be successful if started without any

technical debts or history
● You have to give and dedicate any resource and budget the team

needs, because they need to develop themself freely

You have to be a brain
surgeon, not a sledge
hammer

01
● Every cloud native shift depends on the mindset - that is something you can’t train
● Strategic mass migrations towards cloud can speed up the process, but comes on

other costs - frustration, knowledge gaps & wrong usage of cloud resources
● Identify the group of people who are burning for this topics and give them anything

they need

“Every” dev tool is critical

If your deployment tool fails, you can’t play
out your fix & patches

If your GIT is unavailable in cloud native
there is no way to keep your infra & apps
synced

If your container registry is locked, you can’t
deploy and not push any container

Building IDPs often happen within
a timely terminated projects.

After it, normally budget cuts
happen.

And the developers get shifted to
another project.

The platforms you build
will be used forever

Treat your IDPs as live long product:
● Continuously update the infrastructure
● Implement new integrations
● Implement new providers
● Improve current features

Pattern

Foundation

Fundamental
principles in order to
become good
cloud-native citizens:

● Declarative
● Health Probes
● Lifecycles
● Automation
● Predictable

Behaviour

Communication
mechanisms and
interactions between
the Pods and the
managing platform:

● Batch &
Periodic

● Daemon
● Stateful
● Service

Discovery
● Self

Awareness

Structural

Structuring and
organizing containers
in a Pod to satisfy
different use cases:

● Init Container
● Sidecars
● Adapter
● Ambassador

Advanced

Complex topics which
also doesn’t suit to the
other categories:

● Controller
● Operator
● Elastic Scale
● Image Builder

Configuration

Customizing and
adapting applications
with external
configurations for
various environments:

● EnvVar Config
● Config

Resource
● Immutable

Config
● Config

Template

Don
’t r

ea
d,

list
en

 ;)

Teach pattern
Pattern are old but gold, and give a unique understanding of the

“how”

Because within Kubernetes, we observe a constant miss usage of such
approaches.

● Config Pattern as database
● Daemon Pattern as distribution mechanism
● Sidecars & Ambassadors which calls in all different directions and between

pods
● Operator which are built without operational logic

Development & Product
Management

Understand
microservice and
Cloud Native
pattern

03
● Dynamic changing platforms require that the applications they

serve needs to be able to take dynamics with comfort
● Stateless, event-driven, fault tolerant, decoupled

Don’t build for once,
build for continuous
change

02
● Platforms, like Kubernetes, are often introduced in a one shot

project, and than put into maintenance mode
● However, this is your vehicle for the future, you need to

continuously work on it, and adjust it to your chaninge needs and
the changing capabilities the open source community gives you

“Dev” tools are
sometimes more
critical than your
production systems

01
● Treat anything used for build and deploy your apps as critical as your

production systems - Git system, CICD, Artefact stores and co
● A poor local development environment will not make a great cloud

native solution

Kubernetes

Security, RBAC and
Network Policies from
Day One

01

● Introducing basic security actions like forbidding root or
mounting host path, should be enforced by day one - also
on Dev

● RBAC for some reason gets often no attention - change
that!

● Just to start by a default deny all Network Policy will
leverage your platform above most others in terms of
security

Kubernetes

Do not let anyone
skip the basics02

● Kubernetes does a lot for you, but you have to accept
and support it

● Utilize health checks & probes to maximize your
service availability

● Understand the resource demand of your app and
ensure your apps can scale horizontally

Photo by Alora Griffiths on Unsplash

Multi or Single Cluster
There is no right or wrong

Whether you do one or many clusters,
important is you are good with:

● automation of provisioning
● less scripts more declarative
● ease of use
● build on usefulness not on

fanciness

https://unsplash.com/@aloragriffiths?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/american-football?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Kubernetes

Single Cluster,
Multi Cluster,
Multi-Tenancy -
Self or managed
service?

03
● The most difficult question to answer, whatever you do → Don’t do

only one cluster for all, but also do not make one per app cluster
● A central team providing a self-service provisioning mechanism

with the ability to update clusters and natively integrate into the
development process is the sweet spot you are looking for

Do not let anyone
skip the basics02

● Kubernetes does a lot for you, but you have to accept and support it
● Utilize health checks & probes to maximize your service availability
● Understand the resource demand of your app and ensure your apps

can scale

Security, RBAC and
Network Policies from
Day One

01
● Introducing basic security actions like forbidding root or

mounting host path, should be enforced by day on - also on Dev
● RBAC for some reason gets often no attention - change that!
● Just to start by a default deny all Network Policy will leverage

your platform above most others in terms of security

Avoid:
● Building complex chained CICD

processes
● Self coded cloud development

kits
● A self management portal per

cloud/infrastructure
● Writing own operator where

others have done the
groundwork

Most important

Do not over
engineer!

The biggest mistake we always see

Don’t do it yourself

Enterprises and companies are obsessed with doing it
themselves. (Maybe a PTBS of decades of utilizing commercial tools)

But, building tools or internal products often get abdomed
what can cause severe security problems.

The community does a great job of answering and
fulfilling needs and you can be part of it!

If you use open source ->

Clarify how you can contribute too

Photo by Kevin Kandlbinder on Unsplash

https://unsplash.com/@unkn0wncat?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/baustelle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

But you don’t need to reinvent the wheel

Keep things simple

Design and build for change!

Think about the end user who is maybe
not a 5y K8s veteran ;)

Photo by Stillness InMotion on Unsplash

Summary
Building cloud native can be hard

https://unsplash.com/@stillnes_in_motion?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/fight?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Thank you!
Please visit us at Pavilion 2, SU32

mkoerbaecher

mkoerbi

