
API Experience – Good design for

better and successful APIs that

engage with your customers
Daniel Kocot, Senior Solution Architect / Head of API Experience & Operations

Name: Daniel Kocot

Role: Senior Solution Architect / Head of API

Experience & Operations

Email:

Twitter: @dk_1977

LinkedIn:

daniel.kocot@codecentric.de

https://www.linkedin.com/in/danielkocot/

mailto:daniel.kocot@codecentric.de
https://www.linkedin.com/in/danielkocot/

Customers?

Good Design?

Time Travel

1970s

Dieter Rams

10 Principles of Good Design

Good design is constantly evolving

Time Travel

1995

Jakob Nielsen and Rolf Molich

10 Usability Heuristics for User Interface Design

Time Travel

2017

Ronnie Mitra

7 Usability Heuristics for API Design

#1 Visibility of system status

Is it difficult to learn when something has gone wrong in the system?

Does the interface tell us the result of invocations and requests?

Should the system describe any relevant side-effects that may have occurred?

#2 Match between the system and the real world

Do the message formats, libraries and message patterns match the user’s world?

Is the vocabulary of the API a good match for the user?

Does the API act like the APIs that users are used to using?

#3 Consistency and standards

Is the API consistent in its signature (e.g. URI format, query controls)?

Is the vocabulary of the API consistent? Do words have the same meaning

everywhere?

Is the documentation and support tooling consistent across all parts of the API?

Does the runtime behavior match the documented behavior?

#4 Error prevention

Are documented examples incorrect or misleading?

Is the API designed in a way that makes it “brittle” — where changes to the interface

can easily break the application?

Is the design overly complex? Are there opportunities to simplify the cognitive

workload of the user?

#5 Flexiblity and efficiency of use

How suitable is the interface for the first-time user?

Does the API provide controls and shortcuts for more advanced and experienced

users? Are defaults used for special controls?

Are there opportunities to optimize any repetitive or unnecessary steps?

#6 Help user recognize, diagnose and recover from

errors

Is error information correct?

Is machine readable information provided?

Does it describe the error in a way that the human use can understand it?

Is enough information provided to correct the error?

#7 Help and documentation

Does the documentation address the needs of different learning stages (beginner,
intermediate and expert?)

How much documentation needs to be read before a call can be made? Are

examples provided in the docs?

How well does the documentation structure map to the problems that a user will try

to solve?

Process

API Management

API first

An API is the first (and often only) interface to users of an application

An API comes first — before the implementation

An API is described (documented) or self-descriptive

API as a (Digital) Product

Focus on API Experience / Design

User Experience

Design Sprint

Personas & Use Cases

Personas

Who is going to use the API?

Introduction of characters

Security discussion in reference to a Persona

Building an Authentication / Authorization Flow

Technical user

Functional user

Use Cases

Describing why the API is needed and what systems are involved.

BUT…

You are not the consumer!

API by use case first

API Styles

Tunnel

Resource

Query

Event-Based

Richardson Maturity Model for Web APIs

Level 0: API uses RPC style

Level 1: API exposes Resources

Level 2: API uses HTTP methods and uses HTTP efficiently

Level 3: API uses HATEOAS. The API is self-documenting and flexible

Dissertation by Roy Thomas Fielding (2000)

Architectural Styles and the Design of Network-based Software Architectures

REST emphasizes scalability of component interactions, generality of interfaces,

independent deployment of components, and intermediary components to reduce
interaction latency, enforce security, and encapsulate legacy systems. I describe the

software engineering principles guiding REST and the interaction constraints chosen

to retain those principles, contrasting them to the constraints of other architectural

styles. Finally, I describe the lessons learned from applying REST to the design of the

Hypertext Transfer Protocol and Uniform Resource Identifier standards, and from their
subsequent deployment in Web client and server software.

Hypermedia as the Engine of Application State

(HATEAOS)

Data Model

Data first

Internal vs. External data model

Does the existent data model support the required use cases?

Is a middleware for the aggregations and/or transformations needed?

Master Data Management

Adopting the idea of a Data Catalog

Data Representation

XML

JSON Schema

JSON for Linking Data (JSON-LD)

RDF (Resource Description Framework)

CBOR (Concise Binary Object Representation)

API Specification

OpenAPI / AsyncAPI

Specification Version

Focus Rest(ful) APIs

OpenAPI Map

Principles Rest(ful) HTTP
Object oriented interface Rest(ful) HTTP

getEmployees() GET /employees

updateEmployee(id) PUT /employees/{id}

addEmployee() POST /employees

deleteEmployee(id) DELETE /employees/{id}

getEmployeeRoles(id) GET /employees/{id}/roles

HTTP Methods / Verbs
HTTP Methods Safe Idempotent

GET X X

HEAD X X

PUT - X

POST - -

DELETE - X

OPTIONS X X

PATCH - -

OpenAPI Spec Example

OpenAPI Description Example

openapi: 3.0.3
servers:
 - url: 'http://localhost:8080'
info:
 version: 1.0.0
 title: News API
 contact:
 name: Daniel Kocot
 url: 'http://www.codecentric.de'
 email: daniel.kocot@codecentric.de
 license:
 name: MIT
 url: 'https://www.tldrelgal.com/mit'
 description: An API to provide news
tags:
 - name: news
paths:
 /news:
 get:
 description: gets latest news
 operationId: getNews
 tags:
 - news

responses:

Errorhandling

1xx serves information purposes

2xx is used for successful request

3xx shows redirects

4xx is used for client-side errors

5xx is used for errors

Problem Details for HTTP APIs (RFC7807)
 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "https://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["/account/12345",
 "/account/67890"]
 }

Examples in OpenAPI Descriptions

Media Type Object

responses:
 '200':
 description: response
 content:
 application/vnd.github.v3.object:
 schema:
 "$ref": "#/components/schemas/content-tree"
 application/json:
 schema:
 oneOf:
 - "$ref": "#/components/schemas/content-directory"
 - "$ref": "#/components/schemas/content-file"
 - "$ref": "#/components/schemas/content-symlink"
 - "$ref": "#/components/schemas/content-submodule"
 examples:
 response-if-content-is-a-file:
 "$ref": "#/components/examples/content-file-response-if-content-is-a-file"
 response-if-content-is-a-directory:
 "$ref": "#/components/examples/content-file-response-if-content-is-a-directory"
 response-if-content-is-a-symlink:
 "$ref": "#/components/examples/content-file-response-if-content-is-a-symlink"
 response-if-content-is-a-submodule:
 "$ref": "#/components/examples/content-file-response-if-content-is-a-submodule"

Schema Object Examples

components:
 schemas:
 ArticleList:
 title: ArticleList
 type: array
 items:
 $ref: '#/components/schemas/Article'
 Article:
 title: Article
 description: A article is a part of a news.
 type: object
 properties:
 id:
 type: integer
 title:
 type: string
 example: First Article
 date:
 type: string
 pattern: '^\d{4}(0[1-9]|1[012])(0[1-9]|[12][0-9]|3[01])$'
 example: "20210525"
 description:
 type: string

example: A description

Examples for API Design Patterns

Long Running Operations

Paging / Filtering

Large Payloads

Goal: Establishing a design library

Architecture Discussion

Solutions Architecture Pattern

Using patterns which are well established in the industry…

But also still evolving

But please only adopt them

API-led connectivity

Hybrid integration

Event-Driven architecture

Anti-Corruption Layer

Strangler Pattern

API Endpoint Implementation

API Mediation

Architectural layer to manage, protect and enrich an API

Intercepting API traffic

Concept of "outer" APIs

No business logic should be handled within this layers

Generating model classes for clients

API Backend

Services for Backend Systems

Use a framework the development team is proficient with

To create a first representation of the data

Transformation is maybe needed

Transformations

Use Enterprise Integration Patterns

Apache Camel, Spring Integration, Apache Nifi, SaaS Service (e.g. Make), …

Services for Aggregations

Use again a framework the development team is proficient with

To create aggregated oder composed representation of data from Backend APIs

These APIs help to create a better experience for the user

Testing

Based on the description

Description becomes a contract

Provide a Postman Collection of the API product

Portman

Load testing

Smoke

Load

Stress

Soak

Wrap Up

Posts on codecentric blog:

Posts on my blog:

Posts on Medium:

https://blog.codecentric.de/en/author/daniel-kocot/

https://danielkocot.github.io

https://medium.com/@daniel.kocot

https://blog.codecentric.de/en/author/daniel-kocot/
https://danielkocot.github.io/
https://medium.com/@daniel.kocot

Q&A

Thank you

References

Photo by on

By docsearls - Flickr, CC BY-SA 2.0,

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Photo by on

Blake Wisz Unsplash

https://commons.wikimedia.org/w/index.php?

curid=1328081

Jean-Philippe Delberghe Unsplash

Kelli McClintock Unsplash

Faizur Rehman Unsplash

Erik Mclean Unsplash

Markus Spiske Unsplash

John Salvino Unsplash

Gautam Lakum Unsplash

Fredy Jacob Unsplash

Emil Widlund Unsplash

Dan Dennis Unsplash

https://unsplash.com/@blakewisz?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/customer?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://commons.wikimedia.org/w/index.php?curid=1328081
https://unsplash.com/@jipy32?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/good-design?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@kelli_mcclintock?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cardboard?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@fazurrehman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/user-experience?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@introspectivedsgn?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/dolls?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/programming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@jsalvino?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/security?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@gautamlakum?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/design-sprint?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@thefredyjacob?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@emilwidlund?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/library?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@cameramandan83?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/bricks?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

