
Scalable Frontend Architecture
that meets Your Business

Thomas Gossmann - gos.si - @unistyler

https://gos.si/
https://x.com/unistyler
https://clark.io/
https://clark.io/

Architecture

Architects: Draw the map and guide engineers to the treasure
Engineers: Read the map to reach the treasure

Quiz: What does this Product do? (1)

Quiz: What does this Product do? (2)

Quiz: What does this Product do? (3)

Default Directory Structure - Why ?
Good onboarding to the framework

Explains technical aspects of the framework

Good for hobby and weekend projects

Hardly scalable beyond that

Meet Your Business
Tactical Design

PART 1

Technical Objects
Components

Services

Routes

 not aspects of your product

Domain Objects
Contract

Appointment

Risk Audit

Saloon

Calendar

 they are aspects of your product

Why there is no Domain-Driven Development ?
It is hard to do. Some observed reasons:

1. Education: Data Structures, Algorithms, Design Patterns, Performance, …

Missing: Linguistic Course, Domain-Driven Design Pratices

2. We design development workflows for technical aspects

3. No visibility for the domain in our code

Lack of feedback from product people or designers

No reward to engineers for their contributing impact

Can we (Re)Design our
Development Workflow with the

Business in Mind?

1. Identify Technical Aspects
that Encode Business Logic

Queries

Read

Questions: Ask facts about the system

Abilities/Authorization/Guards/Conditions/Criteria:

Control acces

Commands

Write

Fire & Forget

May/should cause side effects

Command-Query-Separation (CQS)

Functions to either be commands that perform an action or queries that respond data, but neither both!

function query(...args: unknown[]): NonNullable<unknown>; function command(...args: unknown[]): void;

Queries: Presentation Logic / Control Flow
 Two Times Business Logic. Two Times Anti-Patterns

Helper Components
{{#if (feature-flag 'PROPLUS')}}
 Special Feature here
{{/if}}

What's the name of the feature?

hint: it is not "Pro Plus", that's only the feature flag currently

used for its condition

Not unit testable :(

import Component from '@glimmmer/component';
import { service } from '@ember/service';
import type FeaturesService from 'whereever/features-infra-sits';

class Search extends Component {
 @service declare features: FeaturesService;

 get isProPlus() {
 return this.features.has('PROPLUS');
 }

 <template>
 {{#if this.isPropPlus}}
 Special Feature here
 {{/if}}
 </template>
}

Queries: Data Fetching
Fetching data from your API

Business logic part:

Endpoint

Parameters

Payload structure

Commands: Actions

Components Services
import Component from '@glimmer/component';
import { action } from '@ember/object';
import { AnotherComponent } from 'your-ui';

class Expose extends Component {
 @action
 onClick() {
 // whatever happens here
 }

 <template>
 <AnotherComponent @onClick={{this.onClick}}>
 Something sits here
 </AnotherComponent>
 </template>
}

import Service from '@ember/service';

class UserService extends Service {
 createUser(data) {
 // ...
 }

 deleteUser(userId: number) {
 // ...
 }
}

Services
Services is an overloaded Term

Infrastructure Services

API client

Messaging / Message Broker

Application Services

Session

Features

A/B Testing

Domain Services

Domain Objects (CRUD)

e.g. UsersService

We host Business logic in Components, Services, Routes, Controllers, Models
merely to use Ember’s DI system.

We created a strong coupling of business logic to Ember’s DI system 🤔

What is the correct Statement?

(A)
Make a Framework a Dependency of your Business?

(B)
Your Business drives Implementation within a

Framework?

2. (Re)Design our Development
Workflow

Rideshare Example

On the Development of Reactive
Systems with Ember.js

On the DevelopmentOn the Development……

by Clemens Müller and Michael Klein

Domain Modeling Made Functional

Domain Modeling MDomain Modeling M……

by Scott Wlaschin

https://www.youtube.com/watch?v=bzkYV3AeYm4
https://www.youtube.com/watch?v=2JB1_e5wZmU

interface User {
 id: string;
 name: string;
 type: 'rider' | 'driver';
}

type RideState =
 | 'requested'
 | 'declined'
 | 'awaiting_pickup'
 | 'driving'
 | 'arrived'
 | 'payed'
 | 'canceled';

interface Ride {
 id: string;
 from: string;
 to: string;
 riderId: string;
 driverId: string;
 state: RideState;
}

interface User {
 id: string;
 name: string;
 type: 'rider' | 'driver';
}

type RideState =
 | 'requested'
 | 'declined'
 | 'awaiting_pickup'
 | 'driving'
 | 'arrived'
 | 'payed'
 | 'canceled';

interface Ride {
 id: string;
 from: string;
 to: string;
 riderId: string;
 driverId: string;
 state: RideState;
}

// actions
function request(ride: Ride, rider: User): void;
function accept(ride: Ride, driver: User): void;
function drive(ride: Ride, driver: User): void;
function arrive(ride: Ride, driver: User): void;
function pay(ride: Ride, rider: User): void;
function cancel(ride: Ride, user?: User): void;

// guards rsp. abilities
function canRequest(ride: Ride, user: User): boolean;
function canAccept(ride: Ride, user: User): boolean;
function canDrive(ride: Ride, user: User): boolean;
function canDecline(ride: Ride, user: User): boolean;
function canArrive(ride: Ride, user: User): boolean;
function mustPay(ride: Ride, rider: User): boolean;

// questions
function isDriver(user: User): boolean;
function isRider(user: User): boolean;
function isDriverFor(ride: Ride, driver: User): boolean;
function calculateTravelDistance(ride: Ride): number;

Implementation

Goal
Ride Details Page

Task Based UI

Domain Code in plain TS

Thin layer in Ember for DI integration

Given
User is given as part of SessionService

APIClient is our APIService

 {{#if (canAccept @ride)}}
 <Button @push={{fn (accept) @ride}}>Accept</Button>
 {{/if}}

 {{#if (mustPay @ride)}}
 <Button @push={{fn (pay) @ride}}>Pay</Button>
 {{/if}}

import {
 canAccept, mustPay,
 accept, pay
} from 'your-domain';
import { Button } from '@hokulea/ember';

import type { TOC } from '@ember/component/template-only';
import type { Ride } from 'ember-domain';

interface RideActionsSignature {
 Args: {
 ride: Ride;
 }
}

const RideActions: TOC<RideActionsSignature> = <template>

</template>

export { RideActions };

2.1. Actions
1. Bi-Directional API, Statechart, Event-Driven Architecture, CQRS/ES

2. Uni-Directional API, Statechart, CRUD

3. Uni-Directional API, CRUD

Implementing Scenario 1
Fire & Forget

Implementation to focus on:

Endpoint

Parameters

Payload Structure

Additionally to the Domain

Infrastructure/technically relevant parameters

Develop against interfaces

Perfect to mock for testing

import type { APIClient } from 'infra';

async function accept(ride: Ride, driver: User, { apiClient }: { apiClient: APIClient }): void {
 await apiClient.post(`/ride/${ride.id}/accept`, {
 driverId: driver.id
 });
}

Scenario 1: Setup

Scenario 1: Action

MessageBrokerBEacceptStatechartResource

MessageBrokerBE

accept

StatechartResource

Consumer

call

POST /ride/:id/accept

publishEvent('accept')

notifyAboutEvent('accept')

forward the Event

updates Ride

Updates UI

Consumer

Implementing Scenario 2
Fire & Play BE in FE

import type { APIClient } from 'infra';

async function accept(ride: Ride, driver: User, { apiClient }: { apiClient: APIClient }): void {
 await apiClient.post(`/ride/${ride.id}/accept`, {
 driverId: driver.id
 });
}

Scenario 2: Setup

Secnarion 2: Action

Implementing Scenario 3
Fire & Play BE in FE

import type { APIClient } from 'infra';

async function accept(ride: Ride, driver: User, { apiClient }: { apiClient: APIClient }): void {
 await apiClient.post(`/ride/${ride.id}/accept`, {
 driverId: driver.id
 });
}

2.2. Abilities

use single exit functions

no guards with early exits, we are only interested when

something can be done, not when it can’t be done

readability: use positive statements (non negated

statements)

annotate with comments to explain tricky non-

readable code for non-tech people (when

necessary)

function canAccept(ride: Ride, user: User) {
 // when...
 return (
 // ride is in state requested...
 ride.state === RideState.Requested &&
 // AND user is a driver
 isDriver(user)
);
}

2.3. Integration with Ember

Abilities Actions
function canAccept(ride: Ride, user: User) {
 return ride.state === 'requested' && isDriver(user);
}

{{#if (canAccept @ride)}}
 ...
{{/if}}

import type { APIClient } from 'infra';

async function accept(ride: Ride, driver: User, { apiClient
 await apiClient.post(`/ride/${ride.id}/accept`, {
 driverId: driver.id
 });
}

<Button @push={{fn (accept) @ride}}>Accept</Button>

Abilities: ability() from ember-ability

const canAccept = ability((owner) => (ride: Ride) => {
 const session = owner.lookup('service:session');
 const { user } = session;

 return upstreamCanAccept(ride, user);
});

import { canAccept as upstreamCanAccept } from 'your-plain-ts-domain';
import { ability } from 'ember-ability';

export { canAccept };

ember-sweet-owner

import { sweetenOwner } from 'ember-sweet-owner';

const { services } = sweetenOwner(owner);
const { session } = services;

{{#if (canAccept @ride)}}
 ...
{{/if}}

Actions: action() from ember-command

const accept = action(({ services }) => (ride: Ride) => {
 const { session, api } = services;
 const { user } = session;

 upstreamAccept(ride, user, { apiClient: api });
});

import { accept as upstreamAccept } from 'your-plain-ts-domain';
import { action } from 'ember-command';

export { canAccept };

<Button @push={{fn (accept) @ride}}>Accept</Button>

Domain Code
is actually tiny

many tiny functions

easy unit testing

Plain TS can be integrated into multiple systems:

thin integration layer into frameworks

statecharts

but:

is still hard to write code like that

that’s a naive design

needs visibility

a way to reward engineers

Finish the Development Workflow Design
can we have a "magic number" (similar to code-coverage), that signals:

"good code quality that follows our architecture design"

I haven’t found one… (yet?)

Follow nature: Indicator Species

Bridge between engineers and non-tech-people

Use: typedoc

Configure typedoc

Organize our domain aspects:

/**
 * @group Domain Objects
 * @module Ride
 */

Give meaning to our code:

/**
 * @category Abilities
 * @source
 */

Plugin: typedoc-plugin-inline-sources

Configure typedoc:

"navigation": {
 "includeCategories": true,
 "includeGroups": true,
 "includeFolders": false
},
"categorizeByGroup": false

Benefits
Make complexity visible

Significant reduction in bugs

Feature devlivery improved by factor 2-3x

Increased developer velocity

Business logic Lego

Organizing Code and
Scale it Up
Strategic Design

PART 2

Naive Approach
Use Ember Addons

Use Ember Engines

Move things from app into addons/engines

 "False" Scalability

Example: A Zoo
The technical goal is to keep animals and visitors separated

Technical

 Let's make a compound for animals and a
compound for visitors

 Missing accomplished

Domain

 Who put herbivores and carnivores in the same
compound ?

 Short term attraction

 No long term, sustainable solution

Frontend Architecture: How to BuFrontend Architecture: How to Bu……

https://www.youtube.com/watch?v=w6Z7kbrNYcE

Domain
Understanding subdomains

 Core Subdomain

Unique/Core part of your product.

 Supporting
Subdomain

Ancillary parts that support your
core.

 Generic Subdomain

We’ll find these parts in many
applications (e.g. user
management).

Subdomains help you distill your product into manageable pieces.

Time to Solve that Puzzle

github.com/gossi/unidancing

https://github.com/gossi/unidancing

Colophon UniDancing.art
Each domain directory has an index.gts which contains the public API

Routes are exported as part of each domains public API

// routes/exercises/index.gts
export { IndexRoute as default } from '../../domain/core/exercises';

ember-polaris-routing : for defining routes (there is also ember-route-template)

ember-polaris-service : Infrastructure located in their respective domain (no root level services/
directory)

What’s Inside a Subdomain?

 Domain Objects

 Actions

 Abilities

 Questions

 Components

 Routes

 Services / Resources

Public API as gateway to export what is accessible
from the outside

Monolith Modular Monolith

Modular Monolith
1. Directory: domain/

2. Monorepo: Private and public packages packages per subdomain

3. Polyrepo: One repository per subdomain with private and public packages

Scaling Up

Modular Monolith

Directory

Monorepo

Polyrepo

Monolith

Microfrontend

Modular Monolith: Polyrepo
One repo per subdomain

Pro
Use the physical boundaries of a repo for

internal/public API

Everything public API is published to your registry

Contra
You need the publish/update dance

Use release-plan

Use renovate / dependabot to automate updates

Tip

 @unidancing/training

 public-api

 ember (addon)

 main (engine)

Legend: Public

 core

 ember-core (addon)

 Internal

Modular Monolith: Monorepo
One repo for all subdomains

Pro
No need to for publishing/updating

Faster development time

Contra
Needs to mimic the boundaries of a polyrepo

 Linting is required!

 Extra tooling for linting against internal/public

APIs

Tip

domain/core/

choreography/

training/

 ember (addon)

exercises/

Legend: Public

 core

 Internal

Microfrontend
Subdomain independently deployable

Ember engines would be the technological choice

Currently not possible

ember-engines
Use them for isolated context

Do NOT use them for route/chunk splitting (use embroider for that)

Similar to "composable components", Ember will have "composable apps" - and I think that is beatiful

The technical solution for this is unclear as of now (apps and engines might merge)

Takeaways
Focus on the domain

Make your domain/complexity visible

Reward your engineers for their contribution impact

Your domain tells you how to scale up

Thank You
:)

Thomas Gossmann - gos.si - @unistyler

https://gos.si/
https://x.com/unistyler
https://clark.io/
https://clark.io/

