
Elasticsearch

Securing a search engine while maintaining usability

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

Elasticsearch in 10 seconds

Search Engine (FTS, Analytics, Geo), real-time

Distributed, scalable, highly available, resilient

Interface: HTTP & JSON

Centrepiece of the Elastic Stack (Kibana, Logstash, Beats,
APM, ML, Swiftype)

Uneducated guess: Tens of thousands of clusters
worldwide, hundreds of thousands of instances

Agenda

Security: Feature or non-functional requirement?

Security Manager

Production Mode vs. Development Mode

Plugins

Scripting language: Painless

Security
Feature or non-functional requirement?

Security as a non-functional requirement

Software has to be secure! O RLY?

Defensive programming

Do not persist specific data (PCI DSS)

Not exploitable (pro tip: not gonna happen)

No unintended resource access (directory traversal)

Least privilege principle

Reduced impact surface (DoS)

ht
tp

s:
//w

ww
.th

er
eg

is
te
r.c

o.
uk

/2
01

7/
03

/2
6/

m
ie
le
_jo

in
s_

in
te
rn

et
of

st
_h

al
l_o

f_
sh

am
e/

Security as a feature

Authentication

Authorization (LDAP, users, PKI)

TLS transport encryption

Audit logging

SSO/SAML/Kerberos

Security or resiliency?

Integrity checks

Preventing OOMEs

Prevent deep pagination

Do not expose credentials in cluster state/REST APISs

Stop writing data before running out of disk space

Unable to call System.exit

„[T]HERE ARE KNOWN KNOWNS; THERE ARE THINGS WE KNOW WE
KNOW. WE ALSO KNOW THERE ARE KNOWN UNKNOWNS; THAT IS
TO SAY WE KNOW THERE ARE SOME THINGS WE DO NOT KNOW.
BUT THERE ARE ALSO UNKNOWN UNKNOWNS – THERE ARE
THINGS WE DO NOT KNOW WE DON'T KNOW.“

Donald Rumsfeld, former secretary of defense, IT Security Expert

„[T]HERE ARE KNOWN KNOWNS; THERE ARE THINGS WE KNOW WE
KNOW. WE ALSO KNOW THERE ARE KNOWN UNKNOWNS; THAT IS
TO SAY WE KNOW THERE ARE SOME THINGS WE DO NOT KNOW.
BUT THERE ARE ALSO UNKNOWN UNKNOWNS – THERE ARE
THINGS WE DO NOT KNOW WE DON'T KNOW.“

Donald Rumsfeld, former secretary of defense, IT Security Expert

„[T]HERE ARE KNOWN KNOWNS; THERE ARE THINGS WE KNOW WE
KNOW. WE ALSO KNOW THERE ARE KNOWN UNKNOWNS; THAT IS
TO SAY WE KNOW THERE ARE SOME THINGS WE DO NOT KNOW.
BUT THERE ARE ALSO UNKNOWN UNKNOWNS – THERE ARE
THINGS WE DO NOT KNOW WE DON'T KNOW.“

Donald Rumsfeld, former secretary of defense, IT Security Expert

„[T]HERE ARE KNOWN KNOWNS; THERE ARE THINGS WE KNOW WE
KNOW. WE ALSO KNOW THERE ARE KNOWN UNKNOWNS; THAT IS
TO SAY WE KNOW THERE ARE SOME THINGS WE DO NOT KNOW.
BUT THERE ARE ALSO UNKNOWN UNKNOWNS – THERE ARE
THINGS WE DO NOT KNOW WE DON'T KNOW.“

Donald Rumsfeld, former secretary of defense, IT Security Expert

Security Manager
Have you ever called System.setSecurityManager()?

Introduction

Sandbox your java application

Prevent certain calls by your application

Policy file grants permissions

FilePermission (read, write)

SocketPermission (connect, listen, accept)

URLPermission, PropertyPermission, ...

Introduction

Introduction

DEMO

OHAI JLS

https://docs.oracle.com/javase/specs/jls/se11/html/jls-17.html#jls-17.5.3

Drawbacks
Hardcoded policies before startup

DNS lookups are cached forever by default

Forces you to think about dependencies!

Many libraries are not even tested with the security manager, unknown
code paths may be executed

No OOM protection! No stack overflow protection!

Granularity

No protection against java agents

Production mode vs
Development mode

Annoying you now instead of devastating you later

Is your dev setup equivalent to production?

Development environments are rarely setup like
production ones

How to ensure certain preconditions in production but
not for development?

What is a good indicator?

Mode check

Bootstrap checks

Reducing impact
Bad things have less bad results

Reducing impact

Least privilege principle

Do not run as root

No chance of forking a process

Do not expose sensitive settings

Security Manager

Do not run as root

Seccomp - prevent process forks

Security manager could fail

Elasticsearch should still not be able to fork processes

One way transition to tell the operating system to deny
execve, fork, vfork, execveat system calls

Works on Linux, Windows, Solaris, BSD, osx

Mark sensitive settings

Register all your settings

Security Manager in Elasticsearch

Initialization required before starting security manager

Elasticsearch needs to read its configuration file first to
find out about the file paths

Native code needs to be executed first

Solution: Start with empty security manager, bootstrap,
apply secure security manager

Security Manager in Elasticsearch

Special security manager is used

Does not set exitVM permissions, only a few special
classes are allowed to call

Thread & ThreadGroup security is enforced

Also SpecialPermission was added, a special
marker permission to prevent elevation by scripts

Security Manager in Elasticsearch

ESPolicy allows for loading from files plus dynamic
configuration (from the ES configuration file)

Bootstrap check for
java.security.AllPermission

Plugins
... remaining secure

Plugins in 60 seconds

plugins are just zip files

each plugin can have its own jars/dependencies

each plugin is loaded with its own classloader

each plugin can have its own security permissions

ES core loads a bunch of code as modules (plugins that
ship with Elasticsearch)

Sample permissions

Sample permissions

Sample permissions

Introducing Painless
A scripting language for Elasticsearch

Scripting: Why and how?

Expression evaluation without needing to write java
extensions for Elasticsearch

Node ingest script processor

Search queries (dynamic requests & fields)

Aggregations (dynamic buckets)

Templating (Mustache)

Scripting in Elasticsearch

MVEL

Groovy

Expressions

Painless

Painless - a secure scripting language

Hard to take an existing programming language and make it
secure, but remain fast

Sandboxing

Whitelisting over blacklisting, per method

Opt-in to regular expressions

Prevent endless loops

Detect self references to prevent stack overflows

Summary
Security is hard - let's go shopping!

Summary

Not using the Security Manager - what's your excuse?

Scripting is important, is your implementation secure?

Use operating system features!

If you allow for plugins, remain secure!

If you remove features, have alternatives!

Thanks for listening!
Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

Resources
https://github.com/elastic/elasticsearch/
https://www.elastic.co/blog/bootstrap_checks_annoying_instead_of_devastating
https://www.elastic.co/blog/scripting
https://www.elastic.co/blog/scripting-security
https://docs.oracle.com/javase/9/security/toc.htm
https://docs.oracle.com/javase/9/security/permissions-java-development-kit.htm

https://github.com/elastic/elasticsearch/
https://www.elastic.co/blog/bootstrap_checks_annoying_instead_of_devastating
https://www.elastic.co/blog/scripting
https://www.elastic.co/blog/scripting-security
https://docs.oracle.com/javase/9/security/toc.htm
https://docs.oracle.com/javase/9/security/permissions-java-development-kit.htm

Bonus
deep pagination vs search_after

Pagination: Request

C

N

Find the first 10 results
for Elasticsearch

Pagination: Request

C

N

Find the first 10 results
for Elasticsearch

Pagination: Request

C

N N N N N

Find the first 10 results
for Elasticsearch

Pagination: Query Phase

C

N N N N N

Each node returns 10 results,
create real top 10 out of 50

SortedPriorityQueue
size = 50

Pagination: Fetch phase

C

N N N N N

ask for the real top 10

Pagination: Query Phase

C

N N N N N

return real top 10

Pagination: Query

C

N N N N N

Find the 10 results starting
at position 90

Pagination: Query Phase

C

N N N N N

Each node returns 100 results,
create real top 90-100 out of 500

SortedPriorityQueue
size = 500

Pagination: Query

C

N N N N N

Find the 10 results starting
at position 99990

Pagination: Query Phase

C

N N N N N

Each node returns 100k resultsSortedPriorityQueue
size = 500000

Pagination: Query

C

1 N N N 100

Find the 10 results starting
at position 99990 over 100 nodes

Pagination: Query

C

1 100

Each node returns 100k resultsSortedPriorityQueue
size = 10_000_000

N N N

Solution: search_after

Do not use numerical positions

Use keys where you stopped in the inverted index

Let the client tell you what the last key was

Just specify the last sort value from the last document
returned as a starting point

Pagination: search_after

C

1 N N N 100

Find the 10 results starting
at sort key name foo over
100 nodes

Pagination: search_after

C

N N N N N

Each node returns 10 resultsSortedPriorityQueue
size = 1000

Bonus
replacing delete by query

delete_by_query removal/replace

delete_by_query API was not safe

API endpoint was removed

extensive documentation was added what to do instead

infrastructure for long running background tasks was added

delete_by_query was reintroduced using above infra and
doing the exact same thing as in the documentation

data > convenience!

Thanks for listening!
Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

