

Search: a new era

David Pilato | @dadoonet

Agenda

Commercial Commercial

- "Classic" search and its limitations
- ML model and usage
- Vector search or hybrid search in Elasticsearch
- OpenAl's ChatGPT or LLMs with Elasticsearch

Elasticsearch

You Know, for Search

Elasticsearch

66

These are not the droids you are looking for.


```
GET / analyze
  "char filter": [ "html strip" ],
  "tokenizer": "standard",
  "filter": [ "lowercase", "stop", "snowball" ],
  "text": "These are <em>not</em> the droids
           you are looking for."
```



```
These are <em>not</em> the droids you are looking for.
{ "tokens": [{
      "token": "droid",
      "start offset": 27, "end offset": 33,
      "type": "<ALPHANUM>", "position": 4
    },{
      "token": "you",
      "start offset": 34, "end offset": 37,
      "type": "<ALPHANUM>", "position": 5
    }, {
      "token": "look",
      "start offset": 42, "end offset": 49,
      "type": "<ALPHANUM>", "position": 7
    }]}
```


Semantic search

≠

Literal matches

TODAY

X-wing starfighter squadron

TOMORROW

What ships and crews do I need to destroy an almost finished death star?
Or is there a secret weakness?

Elasticsearch

You Know, for Search

Elasticsearch

You Know, for **Vector** Search

What is a **Vector**?

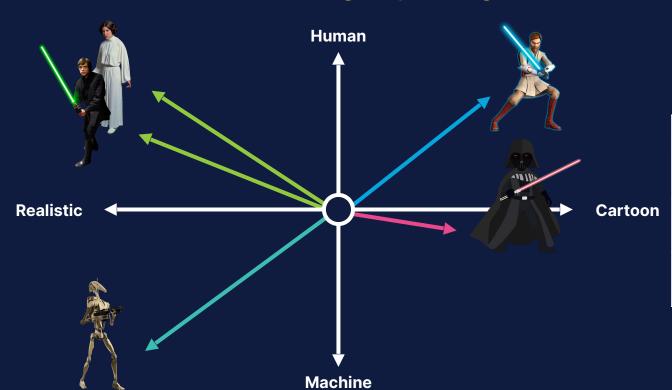
Embeddings represent your data Example: 1-dimensional vector

Character	Vector
	[-1]
	[1]

Multiple dimensions represent different data aspects

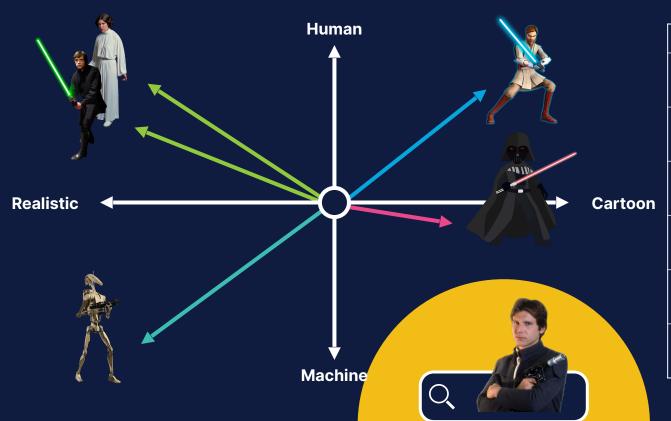


Similar data is grouped together



Character	Vector
	[-1.0, 1.0]
	[1.0, 0.0]
	[-1.0, 0.8]

Vector search ranks objects by similarity (~relevance) to the query



Rank	Result
Query	
1	À
2	
3	×
4	A
5	

Choice of Embedding Model

Start with Off-the Shelf Models

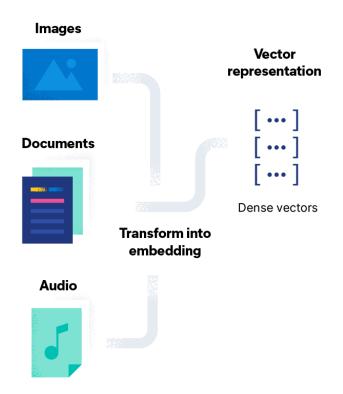
- Text data: Hugging Face (like Microsoft's E5)
- Images: OpenAl's CLIP

Extend to Higher Relevance

- Apply hybrid scoring
- Bring Your Own Model: requires expertise + labeled data

Problem training vs actual use-case

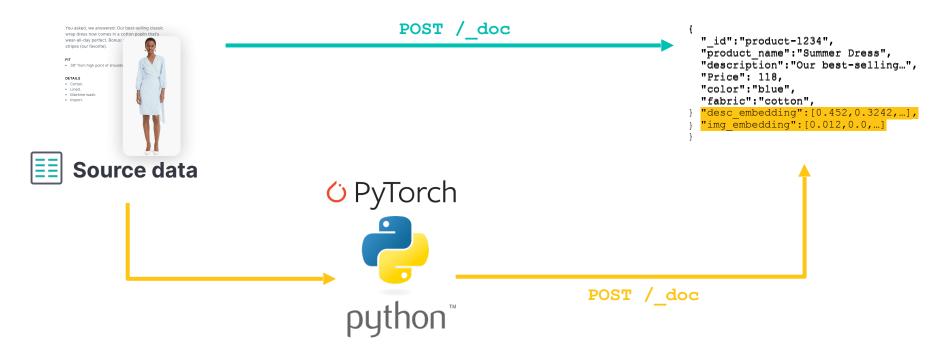
Architecture of Vector Search



How do you

index vectors?

Data Ingestion and Embedding Generation



Commercia,

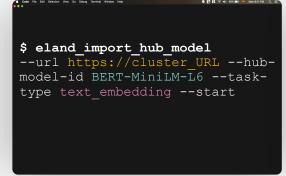
With Elastic ML

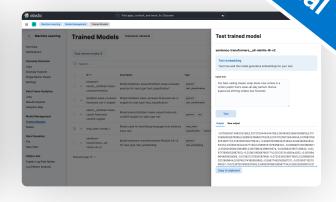


```
"_id":"product-1234",
"product_name":"Summer Dress",
"description":"Our best-selling...",
"Price": 118,
"color":"blue",
"fabric":"cotton",
"desc_embedding":[0.452,0.3242,...]
```


Comm

Eland Imports PyTorch Models





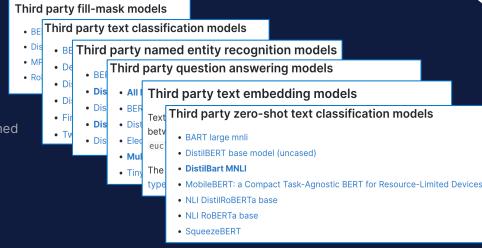
Select the appropriate model

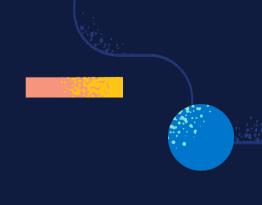
Load it

Manage models

Elastic's range of supported NLP models

- Fill mask model
 - Mask some of the words in a sentence and predict words that replace masks
- Named entity recognition model
 NLP method that extracts information from text
- Text embedding model
 Represent individual words as numerical vectors in a predefined vector space
- Text classification model
 Assign a set of predefined categories to open-ended text
- Question answering model
 Model that can answer questions given some or no context
- Zero-shot text classification model
 Model trained on a set of labeled examples, that is able to classify previously unseen examples

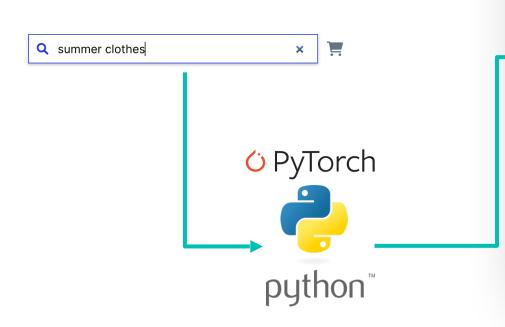




How do you

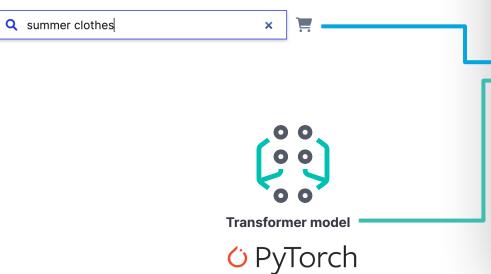
search vectors?

Vector Query



```
GET product-catalog/_search
"query" : {
    "bool": {
      "must": [{
         "knn": {
           "field": "desc embbeding",
           "num candidates": 50,
           "query vector": [0.123, 0.244,...]
      "filter":
        "term": {
          "department": "women"
 "size": 10
```


Vector Query



```
Commercial
GET product-catalog/ search
"query" : {
   "bool": {
     "must": [{
        "knn":
          "field": "desc embbeding",
          "num candidates": 50,
          "query vector builder": {
              "model text": "summer clothes",
              "model id": <text-embedding-model>
     "filter":
       "term":
         "department": "women"
 "size": 10
```


Vector Search components

Search

Index

Generate

Query

Mapping

Embedding

kNN

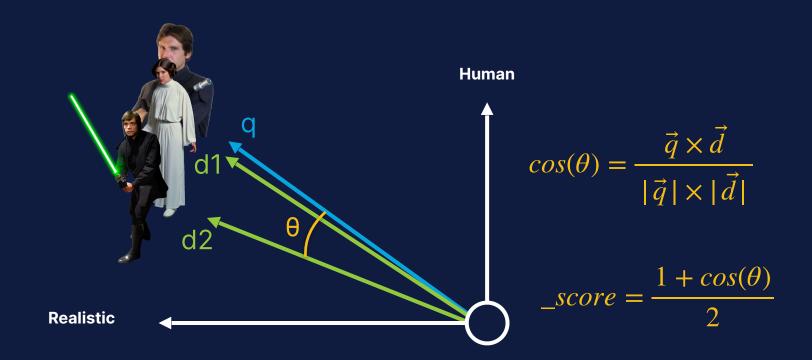
dense_vector

Text embedding model

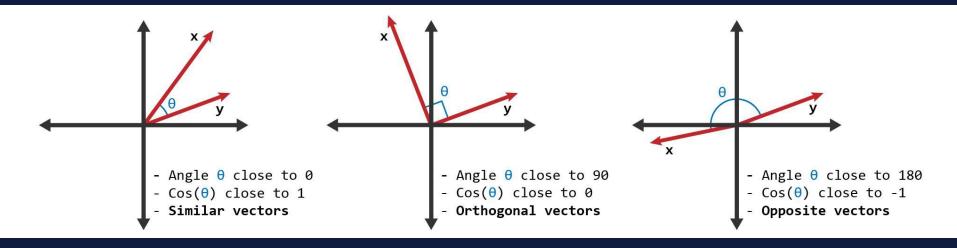
(3rd party, local, in Elasticsearch)

really work?

Similarity: cosine (cosine)

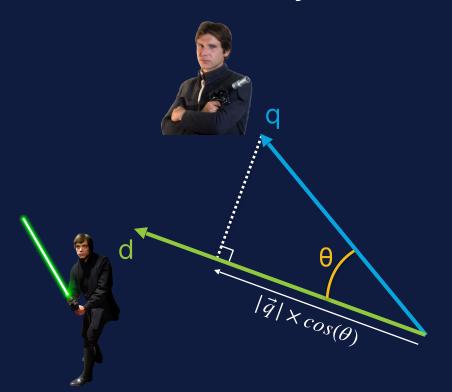


Similarity: cosine (cosine)



$$_score = \frac{1+1}{2} = 1$$
 $_score = \frac{1+0}{2} = 0.5$ $_score = \frac{1-1}{2} = 0$

Similarity: Dot Product (dot_product)

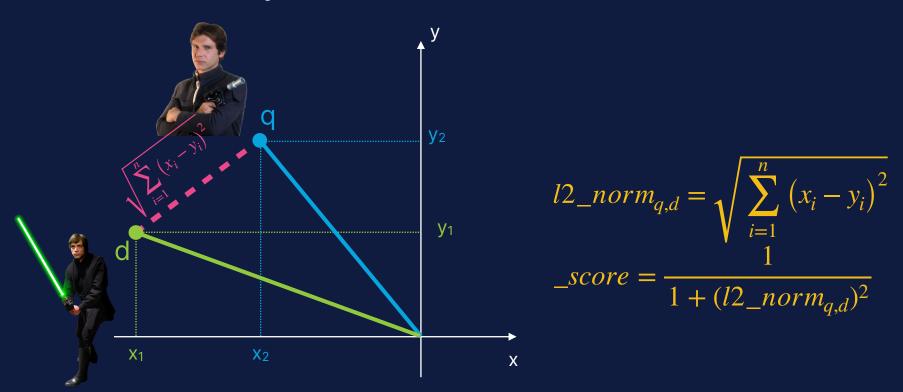


$$\vec{q} \times \vec{d} = |\vec{q}| \times cos(\theta) \times |\vec{d}|$$

$$_score_{float} = \frac{1 + dot_product(q, d)}{2}$$

$$_score_{byte} = \frac{0.5 + dot_product(q, d)}{32768 \times dims}$$

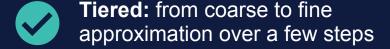
Similarity: Euclidean distance (12_norm)

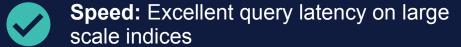


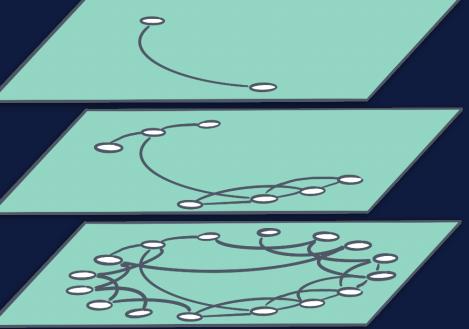
Brute Force

Hierarchical Navigable Small Worlds (HNSW)

One popular approach







Elasticsearch + Lucene = fast progress 💚

Scaling Vector Search

Vector search

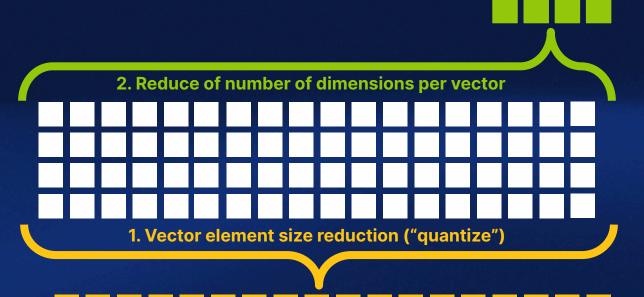
- 1. Needs lots of memory
- 2. Indexing is slower
- 3. Merging is slow

* Continuous improvements in Lucene + Elasticsearch

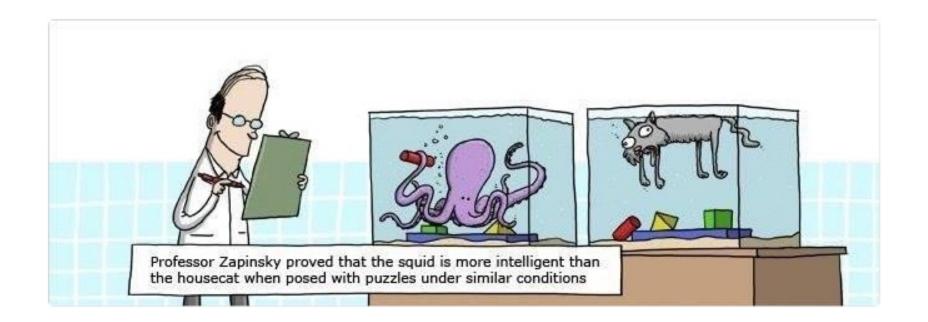
Best practices

- 1. Avoid searches during indexing
- 2. Exclude vectors from _source
- 3. Reduce vector dimensionality
- 4. Use byte rather than float

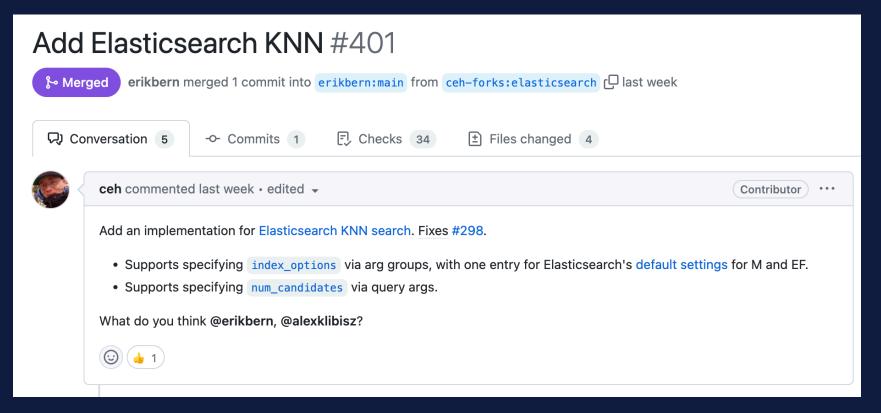
Reduce Required Memory



Benchmarketing



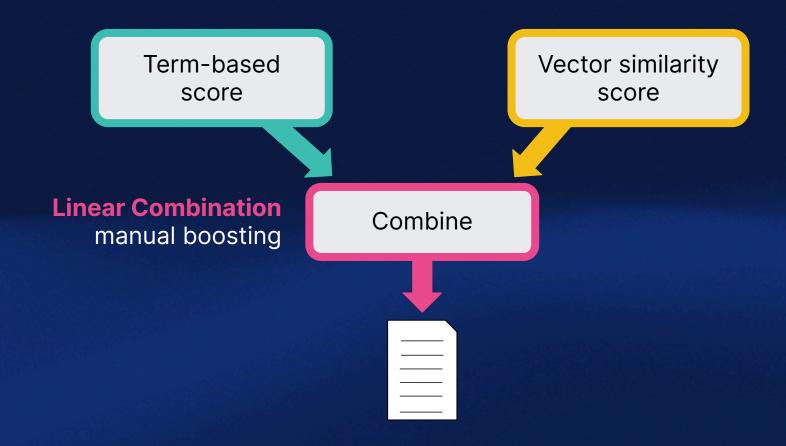
https://github.com/erikbern/ann-benchmarks



Elasticsearch

You Know, for **Hybrid** Search

Hybrid scoring




```
GET product-catalog/_search
  "query" : {
    "bool" : {
      "must" : [{
        "match":
          "description": {
            "query": "summer clothes",
            "boost": 0.9
                                                       summer clothes
        "knn": {
          "field": "desc embbeding",
          "query vector": [0.123, 0.244,...],
          "num candidates": 50,
          "boost": 0.1,
          "filter": {
            "term": {
              "department": "women"
                                                 pre-filter
      }],
        "range" : { "price": { "lte": 30 } }
                                                         post-filter
```



```
GET product-catalog/ search
  "query" : {
    "bool" : {
      "must" : [{
        "match": {
          "description": {
            "query": "summer clothes",
            "boost": 0.9
      },{
        "knn": {
          "field": "image-vector",
          "query vector": [54, 10, -2],
          "num candidates": 50,
          "boost": 0.1
      }, {
        "knn": {
          "field": "title-vector",
          "query vector": [1, 20, -52, 23, 10],
          "num candidates": 10,
          "boost": 0.5
```


ELSER

Elastic Learned Sparse EncodER

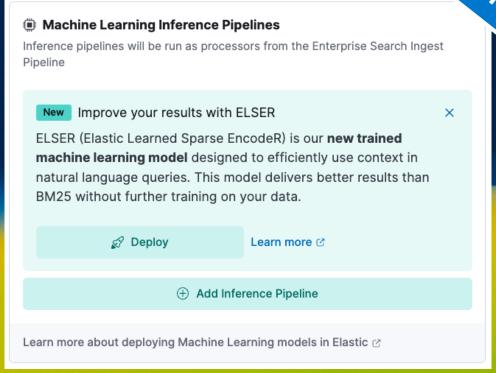
commercial commercial

text_expansion

Not BM25 or (dense) vector

Sparse vector like BM25

Stored as inverted index




```
Commercial
```



```
PUT / inference/sparse embedding/my elser model
  "service": "elser",
  "service settings": {
    "num allocations": 1,
    "num threads": 1
  "task settings": {}
PUT / inference/text embedding/openai embeddings
    "service": "openai",
    "service settings": {
        "api key": "<api key>"
    "task settings": {
       "model": "text-embedding-ada-002"
PUT / inference/text embedding/hugging face embeddings
    "service": "hugging_face",
    "service settings": {
       "api \overline{\text{key}}": "<access token>",
       "url": "<url endpoint>"
```



```
POST / inference/sparse embedding/my elser model
  "input": [
    "These are not the droids you are looking for.",
    "Obi-Wan never told you what happened to your father."
 "sparse embedding": [{
                "lucas": 0.50047517,
                "ship": 0.29860738,
                "dragon": 0.5300422,
                "quest": 0.5974301,
                "dr": 2.1055143,
                "space": 0.49377063,
                "robot": 0.40398192,
```

ommercial

Hybrid ranking

Commercial Commercial

Term-based score

Vector similarity score

ELSER score

Reciprocal Rank Fusion (RRF)
blend multiple
ranking methods

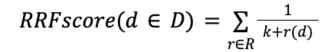
Combine


```
Commercial
GET product-catalog/ search
  "sub searches": [
      "query": {
        "match": { . . . }
                                                BM25f
      <u>"q</u>uery": {
        "text expansion": {...}
                                                ELSER
  "knn": {...},
                                                Vector
  "rank": {
    "rrf": {
      "window size": 50,
      "rank constant": 20
                                            Hybrid Ranking
```

Reciprocal Rank Fusion (RRF)

Ranking Algorithm 1				
Doc	Score	r(d)	k+r(d)	
Α	h	1	61	
В	Ø .7	2	62	
С	0.5	3	63	
D	0.2	4	64	
E	0.01	5	65	

Ranking Algorithm 2				
Doc	Score	r(d)	k+r(d)	
С	1,34	1	61	
Α	739	2	62	
F	732	3	63	
G	192	4	64	
Н	183	5	65	



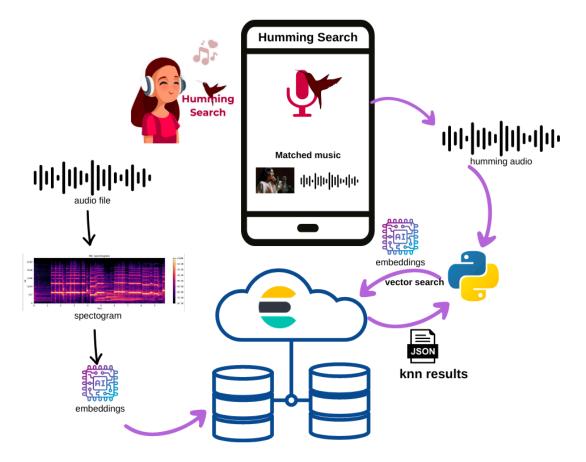
D - set of docs

R - set of rankings as permutation on 1..|D|

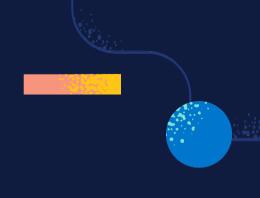
k - typically set to 60 by default

Doc	RRF Score	
Α	1/61 + 1/62 = 0,0325	
С	1/63 + 1/61 = 0,0323	
В	1/62 = 0,0161	
F	1/63 = 0,0159	
D	1/64 = 0,0156	

https://djdadoo.pilato.fr/

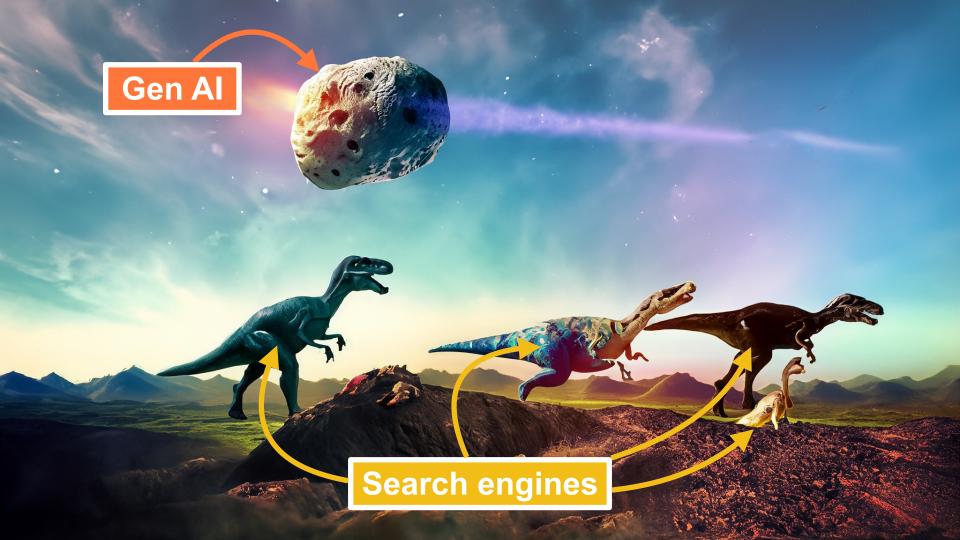


https://github.com/dadoonet/music-search/

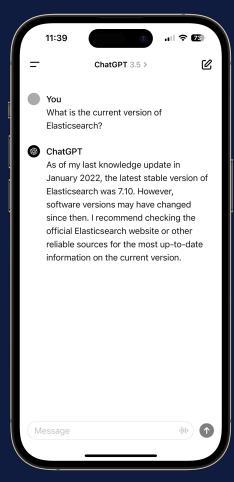


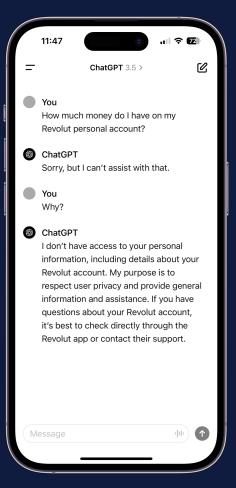
ChatGPT

Elastic and LLM

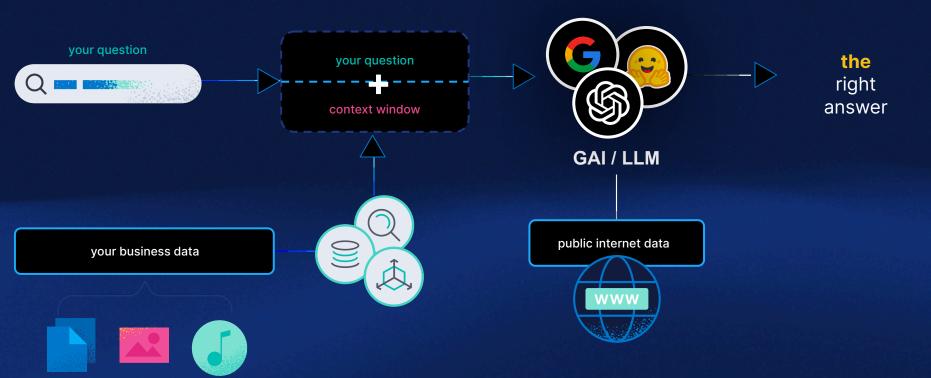


LLM: opportunities and limits





Retrieval Augmented Generation



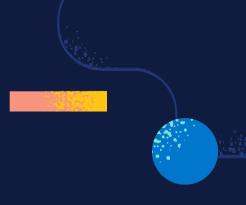
images

documents

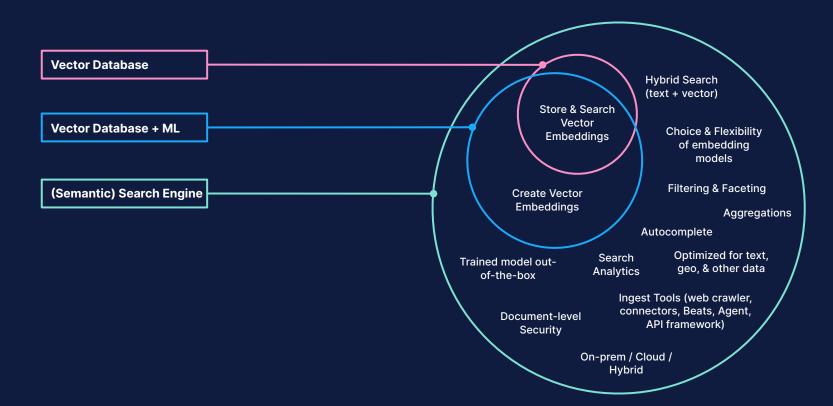
audio

Demo

Elastic + AWS Bedrock Google Vertex Al



Conclusion



Elasticsearch

You Know, for **Semantic** Search

Search: a new era

David Pilato | @dadoonet

