
Horacio Gonzalez
2020-06-22

Futureproof Design Systems
with Web Components

Who are we?
Introducing myself and

introducing OVH OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Flutter

OVHcloud: A Global Leader

Own
20Tbps
Netwok

with
35 PoPs

> 1.3M Customers in 138 Countries

Hosting capacity :
1.3M Physical

Servers

360k
Servers already

deployed

30 Datacenters 1 Dedicated IaaS
Europe

200k Private cloud
VMs running

OVHcloud: 4 Universes of Products
WebCloud Baremetal Cloud Public Cloud Hosted Private Cloud

Domain / Email

Domain names, DNS, SSL, Redirect

Support, Managed

Support Basic

Support thought Partners

Managed services

Standalone, Cluster

VPS aaS

pCC DC

Compute

Storage

Databases

VM

Baremetal

K8S, IA IaaS

File, Block, Object, Archive

Wholesales

SQL, noSQL, Messaging,

Dashboard

MarketPlace

Hosted Private Cloud

VMware

Secured Cloud
GOV, FinTech, Retail, HealtCare

Network
IP FO, NAT, LB, VPN, Router,

DNS, DHCP, TCP/SSL Offload

PaaS for Web

SaaS

Email, Open-Xchange, Exchange

Collaborative Tools, NextCloud

Mutu, CloudWeb

Plesk, CPanel

PaaS with Platform.sh

Wordpress, Magento, Prestashop

CRM, Billing, Payment, Stats

Virtual servers
VPS, Dedicated Server

General Purpose

SuperPlan

Game

Virtualization

Storage

Database

Bigdata

HCI

AI

VDI Cloud Game

Network

T2 >20e

T3 >80e

T4 >300e

T5 >600e

12KVA /32KVA

Virtuozzo Cloud

IT Integrators, Cloud Storage,

CDN, Database, ISV, WebHosting

High Intensive CPU/GPU,

PaaS for
DevOps

Security
IAM, MFA, Encrypt, KMS

IA, DL
Standard Tools for AI, AI Studio,

IA IaaS, Hosting API AI

Bigdata, ML, Analytics
Datalake, ML, Dashboard

SDDC, vSAN 1AZ / 2AZ
vCD, Tanzu, Horizon, DBaaS,
DRaaS

Nutanix
HCI 1AZ / 2AZ, Databases,
DRaaS, VDI

OpenStack
IAM, Compute (VM, K8S)
Stortage, Network, Databases

Storage
Ontap Select, Nutanix File
OpenIO, MinIO, CEPH
Zerto, Veeam, Atempo

AI
ElementAI, HuggingFace,
Deepopmatic, Systran,
EarthCube

Hybrid Cloud
vRack Connect, Edge-DC, Private DC

Dell, HP, Cisco, OCP, MultiCloud

Bigdata / Analitics / ML
Cloudera over S3, Dataiku,
Saagie, Tableau,

Encrypt
KMS, HSM

Encrypt (SGX, Network, Storage)

Disclaimer
Before going further...

A talk for devs by a dev

I am not a designer, neither I play one on TV...

Design isn't only look and feel

Look and feel must be a emanation of brand's
ethos, values and spirit

Example

Design principles

Grounding principles and values
emanating from the brand ethos,

shared by everybody around the product.

Example of Design Principles: Pinterest

https://medium.com/@suprb/redesigning-pinterest-block-by-block-6040a00d80a3

Example of Design Principles: gov.uk

https://www.gov.uk/guidance/government-design-principles

Functional patterns are the building blocks
of the user interface.

They must guide and facilitate
user's behavior.

Functional Patterns

Functional Patterns Example: Netflix

Perceptual patterns are visual elements defining
the look of the product: typography, color palette,

illustration styles, layout shapes, textures…
They should help to express the brand image.

Perceptual Patterns

Perceptual Patterns Example: Slack

A product team need to share a pattern language
based on design principles, to create a coherent

set of functional and perceptual patterns.

Shared Languages

Shared Languages Example: Future Learn

So, what are Design Systems?
And why should I look at them?

The same or different?

A document listing the styles, patterns, practices,
and principles of a brand design standards

Style Guides

Style guides define the application’s look and feel

Style Guides

Style Guide Example: Uber

https://brand.uber.com/

https://brand.uber.com/

Style Guide Example: Medium

https://www.behance.net/gallery/7226653/Medium-Brand-Development

Style Guides alone are ambiguous

Interpretation needed to adapt the preconisation to the use case

Component Catalogs

A component catalog is a repository of components,
with one or several implementations, code examples

and technical documentation

Component Catalog example: Bootstrap

https://getbootstrap.com/

Component Catalog Example: ING's Lion

https://lion-web-components.netlify.app/

Component Catalogs alone create inconsistency

Like using the same LEGO bricks to create very different objects

A Design System is like a common visual
language for product teams

Design Systems

A Design System is a set of design standards,
documentations, and principles, alongside with the

toolkit (UI patterns and code components)
to achieve those standards

Design systems

Design systems

Example: Carbon Design System

https://www.carbondesignsystem.com/

Example: Firefox's Photon Design System

https://design.firefox.com/photon/

Example: Material Design

https://material.io/

The component catalog
The poor relative of the Design System family

Let's choose a simple example

Bootstrap based component catalogs

A long time ago

Components were defined in HTML, CSS and some jQuery

Then it was AngularJS time...

And new reference implementations were needed

But you know the sad story...

All UI Bootstrap based catalogs woke up with
an obsolete implementation

Worry no more, let's do Angular!

ng-bootstrap to the rescue

But times had changed...

In 2017 Angular is only one more in the clique

 React is the new Big ThingTM

So let's build React Bootstrap...

Wait, what about Vue?

We also need BootstrapVue

OK, I think you see my point...

Most Design System do a choice

Either they choose a by canonical implementation
or they ship and maintain several implementations

Both choices are problematic

Shipping only one implementation:
Web dev ecosystem changes quickly and

almost nobody keeps the same framework for years...

Both choices are problematic

Shipping several implementations:
You need to maintain all the implementation…

and you still miss some others

Incomplete catalogs are problematic

People will need to recode the components
in their chosen framework…

Coherence is not guaranteed!!!

Example: Carbon Design System

The 3 minutes context
What the heck are web component?

Web Components

Web standard W3C

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

Web Components

Create your own HTML tags
Encapsulating look and behavior

Web Components

Fully interoperable
With other web components, with any framework

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

 To define your own HTML tag

Custom Element

<body>

 ...

 <script>

window.customElements.define('my-element',

class extends HTMLElement {...});

 </script>

 <my-element></my-element>

</body>

To encapsulate subtree and
style in an element

Shadow DOM

<button>Hello, world!</button>

<script>

var host = document.querySelector('button');

const shadowRoot = host.attachShadow({mode:'open'});

shadowRoot.textContent = 'こんにちは、影の世界!';

</script>

To have clonable document template

Template

<template id="mytemplate">

 <div class="comment"></div>

</template>

var t = document.querySelector('#mytemplate');

// Populate the src at runtime.

t.content.querySelector('img').src = 'logo.png';

var clone = document.importNode(t.content, true);

document.body.appendChild(clone);

But in fact, it’s just an element…

● Attributes

● Properties

● Methods

● Events

Web Components are a web standard

Web Components everywhere, baby!

Do you remember AngularJS?

And all the code put in the trash bin
when Angular arrived...

The pain of switching frameworks?

Rewriting once again your code...

The impossibility of sharing UI code?

Between apps written with different frameworks

Web Components change that

In a clean and standard way

They are truly everywhere 🚀

🚀 Even in the spaaaaaaaace 🚀

Web Components & Design Systems
A match made in heaven

You can have a single implementation

And it simply works everywhere

When you need interoperability

Nothing beats the standard

One more thing…*
Let's copy from the master

Stencil is not so important

WebComponents ARE

WebComponents ARE native

Use the Platform, Luke...

Oh yeah, we all do

Do you love your framework?

Like until death…

Would you marry your framework?

Do you remember when you dropped AngularJS for Angular?

How much does cost the divorce?

Reuse the bricks in your new framework

Why recode everything again?

For different need and sensibilities

Lots of web components libraries

LitElement

SkateJS

Frameworks begin to understand it

And some good news

Angular Elements Vue Web Component
Wrapper

Choose a framework, no problem…

But please, help your future self

Use Web Components!

So for your next app

Conclusion
That's all, folks!

