
@phennex kaspernissen.xyz

Breaking Free with Open Standards:
OpenTelemetry and Perses for
Observability

Kasper Borg Nissen, Developer Advocate at

Container Days Hamburg - September 2025

Developer Advocate at Dash0
KubeCon+CloudNativeCon EU/NA 24/25 Co-Chair (former)
CNCF Ambassador
Golden Kubestronaut
CNCG Aarhus, KCD Denmark Organizer
Co-founder & Community Lead Cloud Native Nordics

Who?

https://university.platformengineering.org/observability-for-platform-engineering

https://university.platformengineering.org/observability-for-platform-engineering

● OpenTelemetry is standardizing telemetry collection.

● Perses is standardizing dashboarding.

● Applying Platform Engineering principles transforms observability into a
seamless, scalable, and developer-friendly experience.

● Building on Open Standards allows you to freely move between vendors,
ensuring they stay on their toes and provide you the best possible
experience.

tl;dr

@phennex kaspernissen.xyz

Observability is still fragmented

LogsMetrics Traces

Image by pngtree.com@phennex kaspernissen.xyz

Observability is still fragmented

LogsMetrics Traces

Image by pngtree.com

We donʼt have a metrics problem,
or a tracing problem.

We have systems problems.

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

Complex Query
Languages

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

Complex Query
Languages

Vendor lock-in

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

Complex Query
Languages

Vendor lock-in Metadata Inconsistency

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

Complex Query
Languages

Vendor lock-in Metadata Inconsistency

No instrumentation due to
high complexity

@phennex kaspernissen.xyz

Image by pngtree.com

This fragmentation, leads to

Complex Query
Languages

Vendor lock-in Metadata Inconsistency

No instrumentation due to
high complexity

Lack of unified insights

@phennex kaspernissen.xyz

A shift is happening.

@phennex kaspernissen.xyz

A shift toward correlation

Find related
information

Jump between
signals

Reconstruct chain of
events

@phennex kaspernissen.xyz

A shift toward correlation

@phennex kaspernissen.xyz

A shift toward…

@phennex kaspernissen.xyz

OpenTelemetry
OpenTelemetry OTel is an open source project designed to provide standardized tools and APIs for generating,
collecting, and exporting telemetry data such as traces, metrics, and logs

The de-facto standard for distributed tracing, also supports metrics and logs (soon profiling)

The main goals of the project are:

● Unified telemetry
● Vendor-neutrality
● Cross-platform

@phennex kaspernissen.xyz

OpenTelemetry in a nutshell

@phennex kaspernissen.xyz

2nd largest CNCF project by contributor count

A set of various things focused on letting you
collect telemetry about systems:

● Data models
● API specifications
● Semantic conventions
● Library implementations in many

languages
● Utilities
● and much more

What it is

✅

OpenTelemetry in a nutshell

@phennex kaspernissen.xyz

● Proprietary
● An all-in-one observability tool
● A data storage or dashboarding solution
● A query language
● A Performance Optimizer
● Feature completeWhat it is NOT

⛔

Source: CNCF Velocity

1/1/20241/1/2025

Commits: 27.168
PRs+Issues: 58.508 Commits: 44.486

PRs+Issues: 56.299

https://docs.google.com/spreadsheets/d/1Lh4rdlOFHyz8lDoiHRYGlR_yNkqvJsz2ld808lVubig/edit?gid=976519966#gid=976519966

@phennex kaspernissen.xyz

OpenTelemetry: A 1000 miles view

Telemetry Backends

Analysis
Tools

OTel API & SDK

auto-instrumentation

…

Instrumentation

Kubernetes

…

Infrastructure

The OpenTelemetry Collector

Receive Process Export

Time-series database

Log database

Trace database

…

Generate and Emit transmit Collect, Convert, Process, Route, Export transmit Store & Analyze

Inspired by visualizations from LFS148

@phennex kaspernissen.xyz

OpenTelemetry: A 1000 miles view

OTel API & SDK

auto-instrumentation

…

Kubernetes

…

Infrastructure

The OpenTelemetry Collector

Receive Process Export

Generate and Emit transmit Collect, Convert, Process, Route, Export transmit Store & Analyze

Collection of Telemetry is
standardized

Vendor space

“The last observability agent you will ever installˮ

… and many more.

Signals

METRICS

42
LOGS

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

TRACES PROFILES

@phennex kaspernissen.xyz

+ Real user monitoring (browser, app)

Telemetry without context is just data

@phennex kaspernissen.xyz

What are we looking at?

@phennex kaspernissen.xyz

What are we looking at?

0 1 2 3 4 5 6 7
Number of Legs

8

C
ut

en
es

s

Awww…
Adorable!

Cute

Pretty
Normal

Unfortunate

Creepy

Gaah!
Kill it! Kill it!

Reddit /r/funny, "Cuteness Vs Number
of legsˮ (circa 2010

@phennex kaspernissen.xyz

How we talk about system context

1

Organization By whom)
Which team owns it?
“Who you gonna call?ˮ
..

3

Compute How/2
Which container?
Which process? Pid? Startup args?
Which runtime is it? Node.js? JVM?
.NET? Which build? Which version?
…

5

Infrastructure Where
Which datacenter / Cloud region /
availability zone / account does it run in?
…

2
Architecture What / Why)

Which service / system component is this?

4

Platform How
Kubernetes? Which cluster / namespace /

deployment / cronjob / job / pod?
AWS ECS? Which cluster / service / task? …

@phennex kaspernissen.xyz

How to set resource attributes?
● Resource detectors & manual

“hard-coding .ˮ
● OTEL_RESOURCE_ATTRIBUTES env var
● Added to telemetry “in transitˮ using the

OpenTelemetry Collector.

Sample initialization of the OpenTelemetry JS Distro in a Node.js
application

import { NodeSDK } from '@opentelemetry/sdk-node';
import { ConsoleSpanExporter } from '@opentelemetry/sdk-trace-node';
import { envDetector, processDetector, Resource} from '@opentelemetry/resources';
import { awsEcsDetector } from '@opentelemetry/resource-detector-aws';

const sdk = new NodeSDK({
 traceExporter: new ConsoleSpanExporter(),
 // Skip metric exporter, auto-instrumentations and more. See
 // https://opentelemetry.io/docs/languages/js/getting-started/nodejs/
 instrumentations: [getNodeAutoInstrumentations()],
 // Specify which resource detectors to use
 resourceDetectors: [envDetector, processDetector, awsEcsDetector],
 // Hard-coded resource
 resources: [new Resource({
 team: 'awesome',
 })],
});

sdk.start();

without context
semantic conventions is just data

@phennex kaspernissen.xyz

Semantic Conventions
Semantic Conventions define a common set of (semantic) attributes which provide meaning to data when
collecting, producing and consuming it.

https://github.com/open-telemetry/semantic-conventions

Semantic Conventions by signals:

● Events: Semantic Conventions for event data.
● Logs: Semantic Conventions for logs data.
● Metrics: Semantic Conventions for metrics.
● Resource: Semantic Conventions for resources.
● Trace: Semantic Conventions for traces and spans.

@phennex kaspernissen.xyz

https://github.com/open-telemetry/semantic-conventions
https://opentelemetry.io/docs/specs/semconv/general/logs/
https://opentelemetry.io/docs/specs/semconv/general/metrics/
https://opentelemetry.io/docs/specs/semconv/resource/
https://opentelemetry.io/docs/specs/semconv/general/trace/

OpenTelemetry semantic conventions to
context layers

1 Organization
😢

3

Compute
Telemetry SDK (stable) and (experimental)
Compute Unit and Instance
Operating System
Process & Process Runtimes
Device, Browser, Webengine, …

…

5 Infrastructure
Cloud (general stuff)

2
Architecture

Service (stable) and (experimental)
Deployment Environment

4

Platform
Kubernetes

Cloud (cloud.platform specifically)
Cloud-provider specific

NOT A
COMPREHENSIVE LIST!

@phennex kaspernissen.xyz

https://opentelemetry.io/docs/specs/semconv/resource/#telemetry-sdk
https://opentelemetry.io/docs/specs/semconv/resource/#telemetry-sdk-experimental
https://opentelemetry.io/docs/specs/semconv/resource/#compute-unit
https://opentelemetry.io/docs/specs/semconv/resource/#compute-instance
https://opentelemetry.io/docs/specs/semconv/resource/os/
https://opentelemetry.io/docs/specs/semconv/resource/process/
https://opentelemetry.io/docs/specs/semconv/resource/device/
https://opentelemetry.io/docs/specs/semconv/resource/browser/
https://opentelemetry.io/docs/specs/semconv/resource/webengine/
https://opentelemetry.io/docs/specs/semconv/resource/cloud/
https://opentelemetry.io/docs/specs/semconv/resource/#service
https://opentelemetry.io/docs/specs/semconv/resource/#service-experimental
https://opentelemetry.io/docs/specs/semconv/resource/deployment-environment/
https://opentelemetry.io/docs/specs/semconv/resource/k8s/
https://opentelemetry.io/docs/specs/semconv/resource/cloud/
https://opentelemetry.io/docs/specs/semconv/resource/cloud-provider/

So, why OpenTelemetry?

@phennex kaspernissen.xyz

Instrument once,
use everywhere

Separate telemetry
generation from

analysis

Make software
observable by

default

Improve how we use
telemetry

@phennex kaspernissen.xyz

Thatʼs all great, but how do I make it
easily accessible for my developers?

The dual role of Platform Engineers in
Observability

@phennex kaspernissen.xyz

Provide Observability as
a product for developers

(traces, metrics, logs,
profiling)

Observe the running
infrastructure

(metrics, logs)

@phennex kaspernissen.xyz

What types of Telemetry do I need?

Based on: “What is observability?ˮ by ubuntu.com

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

Prevalent telemetry types

End-user devices and IoT

Runtimes, applications and services

Cloud, FaaS, Container orchestration

Operating system

Virtualisation

Bare metal

+ RUM

+ RUM

Infrastructure
context

Application
context

https://ubuntu.com/observability/what-is-observability

Platform Engineering for Observability

Self-Service Experience Explicit and Consistent APIs Golden Paths

Modularity Platform as a Product Core Requirements

@phennex kaspernissen.xyz

Platform Engineering for Observability

Self-Service Experience
Auto-Instrumentation

Explicit and Consistent APIs
Semantic Conventions

Golden Paths
Observability built-in

Modularity
Collector Pipelines

Platform as a Product
Documentation + Support

Core Requirements
Cross-signal correlation

@phennex kaspernissen.xyz

Thatʼs all great, but I ask again,
how do I make it easily accessible for

my developers?

@phennex kaspernissen.xyz

The answer:
Auto-instrumentation + Operators

=

No-touch Instrumentation

@phennex kaspernissen.xyz

OpenTelemetry Operator

Instrumentation

OpenTelemetry
Operator

OpenTelemetryCollector OpAMPBridge TargetAllocator

@phennex kaspernissen.xyz

Auto-Instrumentation with the
OpenTelemetry Operator

Instrumentation

OpenTelemetry
Operator

Instructs how to inject
auto-instrumentation

Injects
instrumentation in

to the pod

@phennex kaspernissen.xyz

Observability doesnʼt stop at
instrumentation.

@phennex kaspernissen.xyz

Perses

An open specification for
dashboards.

CNCF Sandbox project

@phennex kaspernissen.xyz

Dashboards as Code

perses-operator

PersesDashboardPersesDatasourcePerses

@phennex kaspernissen.xyz

Demo

instr. todo-go todo-java

MySQLPostgres

OpenTelemetry
Collector

Perses

Prometheus

JaegerOpenTelemetry
Operator

Perses Operator
PersesDashboardPersesDatasource

Instrumentation

Inject
eBPF-sidecar

Inject Java
Agent

@phennex kaspernissen.xyz

Recap

instr. todo-go todo-java

MySQLPostgres

OpenTelemetry
Collector

Perses

Prometheus

JaegerOpenTelemetry
Operator

Perses Operator
PersesDashboardPersesDatasource

Instrumentation

Inject
eBPF-sidecar

Inject Java
Agent

@phennex kaspernissen.xyz

Observability is evolving - fast.

@phennex kaspernissen.xyz

OpenTelemetry is standardizing telemetry
collection.

@phennex kaspernissen.xyz

Perses is standardizing dashboarding.

@phennex kaspernissen.xyz

Applying Platform Engineering principles
can transform observability from an

afterthought into a seamless, scalable, and
developer-friendly experience.

@phennex kaspernissen.xyz

Observability is a systems problem
- not a tracing, logging, or metrics problem.

@phennex kaspernissen.xyz

When we connect signals together,
we empower developers to solve problems

faster.

@phennex kaspernissen.xyz

And last but not least,
Building on Open Standards allows you to

freely move between vendors, ensuring they
stay on their toes and provide you the best

possible experience.

@phennex kaspernissen.xyz

Shameless plug: OTelBin
Forever free, OSS

Editing, visualization and
validation of
OpenTelemetry Collector
configurations

With ❤ by Dash0!

https://www.otelbin.io/

@phennex kaspernissen.xyz

@phennex kaspernissen.xyz

Thank you!
Get in touch!

Kasper Borg Nissen, Developer Advocate at

Demo can be found here!
https://github.com/dash0hq/container-days-ham

burg-2025

