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Who?



https://university.platformengineering.org/observability-for-platform-engineering 

https://university.platformengineering.org/observability-for-platform-engineering


● OpenTelemetry is standardizing telemetry collection.

● Perses is standardizing dashboarding.

● Applying Platform Engineering principles transforms observability into a 
seamless, scalable, and developer-friendly experience. 

● Building on Open Standards allows you to freely move between vendors, 
ensuring they stay on their toes and provide you the best possible 
experience.

tl;dr
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Observability is still fragmented

LogsMetrics Traces
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Observability is still fragmented

LogsMetrics Traces

Image by pngtree.com

We donʼt have a metrics problem, 
or a tracing problem. 

We have systems problems.
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This  fragmentation, leads to

Complex Query
Languages

Vendor lock-in Metadata Inconsistency

No instrumentation due to 
high complexity

Lack of unified insights
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A shift is happening.
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A shift toward correlation

Find related 
information

Jump between 
signals

Reconstruct chain of 
events
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A shift toward correlation
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A shift toward…
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OpenTelemetry
OpenTelemetry OTel is an open source project designed to provide standardized tools and APIs for generating, 
collecting, and exporting telemetry data such as traces, metrics, and logs

The de-facto standard for distributed tracing, also supports metrics and logs (soon profiling)

The main goals of the project are:

● Unified telemetry
● Vendor-neutrality
● Cross-platform
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OpenTelemetry in a nutshell
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2nd largest CNCF project by contributor count

A set of various things focused on letting you 
collect telemetry about systems:

● Data models
● API specifications
● Semantic conventions
● Library implementations in many 

languages
● Utilities
● and much more

What it is

✅



OpenTelemetry in a nutshell
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● Proprietary
● An all-in-one observability tool
● A data storage or dashboarding solution
● A query language
● A Performance Optimizer
● Feature completeWhat it is NOT

⛔



Source: CNCF Velocity 

1/1/20241/1/2025

Commits: 27.168
PRs+Issues: 58.508 Commits: 44.486

PRs+Issues: 56.299

https://docs.google.com/spreadsheets/d/1Lh4rdlOFHyz8lDoiHRYGlR_yNkqvJsz2ld808lVubig/edit?gid=976519966#gid=976519966
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OpenTelemetry: A 1000 miles view

Telemetry Backends

Analysis 
Tools

OTel API & SDK

auto-instrumentation

…

Instrumentation

Kubernetes

…

Infrastructure

The OpenTelemetry Collector

Receive Process Export

Time-series database

Log database

Trace database

…

Generate and Emit transmit Collect, Convert, Process, Route, Export transmit Store & Analyze

Inspired by visualizations from LFS148
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OpenTelemetry: A 1000 miles view

OTel API & SDK

auto-instrumentation

…

Kubernetes

…

Infrastructure

The OpenTelemetry Collector

Receive Process Export

Generate and Emit transmit Collect, Convert, Process, Route, Export transmit Store & Analyze

Collection of Telemetry is 
standardized

Vendor space

“The last observability agent you will ever installˮ

… and many more.



Signals

METRICS

42
LOGS

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200
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20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

20/JUN/2025 “GET / HTTP/1.1ˮ 200

TRACES PROFILES
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+ Real user monitoring (browser, app)



Telemetry without context is just data
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What are we looking at?
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What are we looking at?

0 1 2 3 4 5 6 7
Number of Legs

8

C
ut

en
es

s

Awww…
Adorable!

Cute

Pretty
Normal

Unfortunate

Creepy

Gaah!
Kill it! Kill it!

Reddit /r/funny, "Cuteness Vs Number 
of legsˮ (circa 2010
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How we talk about system context

1

Organization By whom)
Which team owns it?
“Who you gonna call?ˮ
..

3

Compute How/2
Which container?
Which process? Pid? Startup args?
Which runtime is it? Node.js? JVM? 
.NET? Which build? Which version?
…

5

Infrastructure Where
Which datacenter / Cloud region / 
availability zone / account does it run in? 
…

2
Architecture What / Why)

Which service / system component is this?

4

Platform How
Kubernetes? Which cluster / namespace / 

deployment / cronjob / job / pod?
AWS ECS? Which cluster / service / task? …
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How to set resource attributes?
● Resource detectors & manual 

“hard-coding .ˮ
● OTEL_RESOURCE_ATTRIBUTES env var 
● Added to telemetry “in transitˮ using the 

OpenTelemetry Collector.

Sample initialization of the OpenTelemetry JS Distro in a Node.js 
application

import { NodeSDK } from '@opentelemetry/sdk-node';
import { ConsoleSpanExporter } from '@opentelemetry/sdk-trace-node';
import { envDetector, processDetector, Resource} from '@opentelemetry/resources';
import { awsEcsDetector } from '@opentelemetry/resource-detector-aws';

const sdk = new NodeSDK({
 traceExporter: new ConsoleSpanExporter(),
 // Skip metric exporter, auto-instrumentations and more. See
 // https://opentelemetry.io/docs/languages/js/getting-started/nodejs/
 instrumentations: [getNodeAutoInstrumentations()],
 // Specify which resource detectors to use
 resourceDetectors: [envDetector, processDetector, awsEcsDetector],
 // Hard-coded resource
 resources: [new Resource({
   team: 'awesome',
 })],
});

sdk.start();



without context 
semantic conventions is just data
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Semantic Conventions
Semantic Conventions define a common set of (semantic) attributes which provide meaning to data when 
collecting, producing and consuming it.

https://github.com/open-telemetry/semantic-conventions 

Semantic Conventions by signals:

● Events: Semantic Conventions for event data.
● Logs: Semantic Conventions for logs data.
● Metrics: Semantic Conventions for metrics.
● Resource: Semantic Conventions for resources.
● Trace: Semantic Conventions for traces and spans.
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https://github.com/open-telemetry/semantic-conventions
https://opentelemetry.io/docs/specs/semconv/general/logs/
https://opentelemetry.io/docs/specs/semconv/general/metrics/
https://opentelemetry.io/docs/specs/semconv/resource/
https://opentelemetry.io/docs/specs/semconv/general/trace/


OpenTelemetry semantic conventions to 
context layers

1 Organization 
😢

3

Compute 
Telemetry SDK (stable) and (experimental)
Compute Unit and Instance
Operating System
Process & Process Runtimes
Device, Browser, Webengine, …

…

5 Infrastructure 
Cloud (general stuff)

2
Architecture 

Service (stable) and (experimental)
Deployment Environment

4

Platform
Kubernetes

Cloud (cloud.platform  specifically)
Cloud-provider specific

NOT A 
COMPREHENSIVE LIST!
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https://opentelemetry.io/docs/specs/semconv/resource/#telemetry-sdk
https://opentelemetry.io/docs/specs/semconv/resource/#telemetry-sdk-experimental
https://opentelemetry.io/docs/specs/semconv/resource/#compute-unit
https://opentelemetry.io/docs/specs/semconv/resource/#compute-instance
https://opentelemetry.io/docs/specs/semconv/resource/os/
https://opentelemetry.io/docs/specs/semconv/resource/process/
https://opentelemetry.io/docs/specs/semconv/resource/device/
https://opentelemetry.io/docs/specs/semconv/resource/browser/
https://opentelemetry.io/docs/specs/semconv/resource/webengine/
https://opentelemetry.io/docs/specs/semconv/resource/cloud/
https://opentelemetry.io/docs/specs/semconv/resource/#service
https://opentelemetry.io/docs/specs/semconv/resource/#service-experimental
https://opentelemetry.io/docs/specs/semconv/resource/deployment-environment/
https://opentelemetry.io/docs/specs/semconv/resource/k8s/
https://opentelemetry.io/docs/specs/semconv/resource/cloud/
https://opentelemetry.io/docs/specs/semconv/resource/cloud-provider/


So, why OpenTelemetry?
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Instrument once, 
use everywhere

Separate telemetry 
generation from 

analysis

Make software 
observable by 

default

Improve how we use 
telemetry
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Thatʼs all great, but how do I make it 
easily accessible for my developers?



The dual role of Platform Engineers in 
Observability
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Provide Observability as 
a product for developers

(traces, metrics, logs, 
profiling)

Observe the running 
infrastructure

(metrics, logs)
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What types of Telemetry do I need?

Based on: “What is observability?ˮ by ubuntu.com 

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

— — —-
— —- —
— — —-
— — —-
—- — —

Prevalent telemetry types

End-user devices and IoT

Runtimes, applications and services

Cloud, FaaS, Container orchestration

Operating system

Virtualisation

Bare metal

+ RUM

+ RUM

Infrastructure 
context

Application 
context

https://ubuntu.com/observability/what-is-observability


Platform Engineering for Observability

Self-Service Experience Explicit and Consistent APIs Golden Paths

Modularity Platform as a Product Core Requirements
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Platform Engineering for Observability

Self-Service Experience
Auto-Instrumentation

Explicit and Consistent APIs
Semantic Conventions

Golden Paths
Observability built-in

Modularity
Collector Pipelines

Platform as a Product
Documentation + Support

Core Requirements
Cross-signal correlation
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Thatʼs all great, but I ask again, 
how do I make it easily accessible for 

my developers?
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The answer: 
Auto-instrumentation + Operators

= 

No-touch Instrumentation
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OpenTelemetry Operator

Instrumentation

OpenTelemetry 
Operator

OpenTelemetryCollector OpAMPBridge TargetAllocator
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Auto-Instrumentation with the 
OpenTelemetry Operator

Instrumentation

OpenTelemetry 
Operator

Instructs how to inject 
auto-instrumentation

Injects 
instrumentation in 

to the pod
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Observability doesnʼt stop at 
instrumentation.
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Perses

An open specification for 
dashboards.

CNCF Sandbox project
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Dashboards as Code

perses-operator

PersesDashboardPersesDatasourcePerses
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Demo

instr. todo-go todo-java

MySQLPostgres

OpenTelemetry
Collector

Perses

Prometheus

JaegerOpenTelemetry 
Operator

Perses Operator
PersesDashboardPersesDatasource

Instrumentation

Inject 
eBPF-sidecar

Inject Java 
Agent
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Recap

instr. todo-go todo-java

MySQLPostgres

OpenTelemetry
Collector

Perses

Prometheus

JaegerOpenTelemetry 
Operator

Perses Operator
PersesDashboardPersesDatasource

Instrumentation

Inject 
eBPF-sidecar

Inject Java 
Agent
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Observability is evolving - fast.
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OpenTelemetry is standardizing telemetry 
collection.
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Perses is standardizing dashboarding.

@phennex           kaspernissen.xyz



Applying Platform Engineering principles 
can transform observability from an 

afterthought into a seamless, scalable, and 
developer-friendly experience.
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Observability is a systems problem 
- not a tracing, logging, or metrics problem.
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When we connect signals together, 
we empower developers to solve problems 

faster.
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And last but not least,
Building on Open Standards allows you to 

freely move between vendors, ensuring they 
stay on their toes and provide you the best 

possible experience.
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Shameless plug: OTelBin
Forever free, OSS

Editing, visualization and 
validation of 
OpenTelemetry Collector 
configurations

With ❤ by Dash0!

https://www.otelbin.io/
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Thank you!
Get in touch! 

Kasper Borg Nissen, Developer Advocate at

Demo can be found here!
https://github.com/dash0hq/container-days-ham

burg-2025


