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● I love iteration!
● Evolution.

● Learning to walk.

● Training to run.

● Evading project managers.

● Clean development.

Clean Application Development – Iteration
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● Clean application development cannot be taught in 45 minutes
● Practice, Practice, Practice.

● Leave the code better than you found it.

● Always watch for new techniques.

● No “silver bullet“.

Clean Application Development – Learning
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● A great resource on code quality.

Clean Application Development – Resources

Clean Code
By Robert C. Martin
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● Disasters happen, resulting in bad...
● It's easy

● Short deadlines

● Boss

● Laziness

● Lack of “how-to“

● Come back and clean later

● We are the cause!

Clean Application Development – Causes of bad...
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● Bad things starts innocently

● Hire a new 
professional/developer

● Clean slate, no expectations

● Start a new project
● Initial output is quick and easy, 

setting expectation

● Slows down over time

● Complexity increases

● Domino effect

Clean Application Development – Typical Scenario
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● Our responsibility to say “NO“
● Managers job = defend schedule and features

● Our job = defend the code

● Managers respect realistic reasons and explanations

Clean Application Development – Defend the code
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● Others judge us on our code
● We are @authors.

● 75% of time reading code

● Others read our code also
● And they talk about it!

● How developers talk about us = “CRED“

Clean Application Development – We are judged

And they talk about it!
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● Side-effects of bad code:
● Wasted Time

● Bugs

● Excessive debugging

● Procrastination

● Missed deadlines

● Technical debt

● Financial losses

Clean Application Development – Result of bad code
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● How we typically react to a dirty application:
● Padded estimates

● Developers Hide

● Become defensive

● Blame others/requirements

● Add developers

● Rewrite!

Clean Application Development – The aftermath
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● The problem with a rewrite:
● Development team split, old/new

● Legacy application enhanced

● New application Scope creep

● Is it done yet?

● Ends with more bad code!

Clean Application Development – Rewrite problems
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● Learn to Refactor.

Clean Application Development – Resources

Refactoring 101
By Adam Culp

Refactoring
By Martin Fowler

https://github.com/adamculp/refactoring101 https://refactoring101.com



Page  15

● With all of these problems, clean applications makes sense
● Shortens development time.

● On-boarding of developers easier.

● Less bugs.

● Happier end-users.

● Predictable schedules.

● It's the professional thing to do.

Clean Application Development – Common sense
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● Coding Standards save time
● Gives direction

● PHP Framework Interoperability Group (https://www.php-fig.org).

● Standard NOT important

● Unless it‘s public code
● Choose one
● Stick with it

● Consistency is key

Clean Application Development – Coding standards
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● Names should be clear
● Functions and variables should tell a story.

Clean Application Development – Clear names

$elapsedTimeInDays;
$daysSinceCreation;
$daysSinceModified;
$fileAgeInDays;

$elapsed;
$createdDays;
$modifiedDays;
$age;

GoodBad
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● Shy away from variations of the same name
● To ensure names are different enough to portray difference.

Clean Application Development – No confusion

$product
$productInfo
$productData
$productDescription

What is the difference between these?
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● Certain characters are hard to understand

Clean Application Development – Bad characters

Lower case L
Uppercase O (oh)
Uppercase I (eye)

Bad
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● Technical names help developers who actually read the code.

● Non-technical terms for client documentation.

● Class names should be nouns

● Describe.

● Ex. - Customer, Account, Product, Company.

● Method names should be verbs
● Action.

● Ex. - getCustomer, closeAccount, updateProduct, addCompany.

● Pick a set of keywords and stick with them.

● Ex. - fetch, get, add, update, remove, delete

Clean Application Development – Name grammar
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● More on Clean Code
● Functions:

● Short
● Single purpose
● As expected
● Well named

● Recognizing bad doesn't mean we know how to make good

● We know a good/bad song, but are not song writers
● Clean code = caring developer

● Does not require many comments

Clean Application Development – Clean code
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● Comments can also be a bad “smell“
● Comments are often used to cover up bad code.

● Code should be self-documenting

Clean Application Development – Code comments
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● How to spot bad code (smells)
● Incomplete error handling

● Memory leaks

● Race conditions

● Inconsistent naming convention (class, function, variable)

● Inconsistent coding standard

● Un-initialized variables

● Code lacks clear purpose

● Functions do too much (more than one thing)

● Globals used

● Too many comments in the code

● Notices, Warnings, Fatal Errors

Clean Application Development – Smells of bad code



Page  24

● Let PHP CodeSniffer detect bad smells
● Set rules to detect if coding standard is not followed

● Run during commits in version control

● IDE integration

Clean Application Development – Code sniffer
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● Peer code review great learning tool
● Peers help train each other on strong points.

● Fresh set of eyes.

● Builds better teams.

Clean Application Development – Peer code reviews
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● Standard and quick solutions to common coding problems
● Provide standard ways of dealing with common code problems.

● “Guide to PHP Design Patterns“ by Jason Sweat.

● “Design Patterns, Elements of Reusable Object-Oriented Software“ by Gang of 
four

Clean Application Development – Design Patterns
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● Frameworks help keep things in line
● $evil = 'roll-your-own'

● Knowledge transfer
● Onboarding
● Insecure

● Allows our code to be lighter, simpler

● Does heavy lifting

● Most modern frameworks are:

● MVC
● Service driven
● Middleware

● STICK TO IT!!!

Clean Application Development – Frameworks
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● We can tell pretty simply this “looks“ like a library. (bookshelves, 
computers, book categories)

Clean Application Development – Clear architecture
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● These are pretty obvious without any explanation.

Clean Application Development – Obvious purpose
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● This would take a bit more digging to figure out.

Clean Application Development – MVC architecture?
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● Framework evolution
● Component Libaries

● Full (kitchen sink) Stack

● MVC

● Micro

● Action → Response

● Component-ized

● Middleware

Clean Application Development – Evolution
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● Composer and Packagist
● Prevents NIH

● Standardized autoloading

● Easier upgrades

● Promotes OSS

● Faster onboarding

● Public and Private code

Clean Application Development – Dependencies

OR
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● Unit testing = parachute
● Each test = one thing

● Ensures system functioning

● Makes refactoring easier

● The “Way of Testivus“

Clean Application Development – Testing
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● Important things should be done first
● Write failing tests first, then write the code required to make it pass.

Clean Application Development – TDD



Page  35

● QA at the begining instead of the end
● QA waits for code to test.

● Create tests based on requirements, first.

● Developers write code to pass tests.

● The end is not so bad now.

Clean Application Development – QA and unit tests
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● Agile = Project Iteration
● Average sprint is 2 weeks

● At the end of the sprint EVERYTHING is “done“

● Tests
● Development
● Documentation

● Velocity charts, MAKE THEM PUBLIC

● Charts allow business to recover gracefully

Clean Application Development – Agile
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● Our clients hired a professional, they should get one
● Professionals are:

● Trusted
● Reliable estimates
● Quality
● Replaceable

● Promotable
● Documented
● Repeatable
● Vacation

● Use standards/conventions

Clean Application Development – Human resources
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● Clean application development is:
● Learning, repetition, practice.

● Clear architecture.

● Coding standards and styles.

● Framework and best practices.

● Testing.

● Agile.

● Learning to say “NO“, and defend the code.

● Living up to the title “Professional“

Clean Application Development – Close
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● Resources
● Adam Culp @adamculp

● http://www.GeekyBoy.com

● http://RunGeekRadio.com

● Book: “Clean Code“ by Robert C. Martin

● Book: “Refactoring“ by Martin Fowler

● https://github.com/adamculp/refactoring101 

● Book: “Refactoring 101“ by Adam Culp http://refactoring101.com 

● Book: “Guide to PHP Design Patterns“ by Jason Sweat

● Book: “Design Patterns“ by Gang of four

● http://www.php-fig.org

Clean Application Development – Resources

Thank You!
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