
Adam Culp @adamculp

Clean Application Development

Page  2

Clean Application Development

● About me
● OSS Contributor

● PHP Certified

● Zend Certification Advisory Board

● PHP-Fig voting member (IBM i Toolkit)

● Consultant at Zend Technologies

● Organizer SoFloPHP (South Florida)

● Organizer SunshinePHP (Miami)

● Long distance (ultra) runner

● Photography Enthusiast

● Judo Black Belt Instructor

Page  3

Clean Application Development

● About me
● OSS Contributor

● PHP Certified

● Zend Certification Advisory Board

● PHP-Fig voting member (IBM i Toolkit)

● Consultant at Zend Technologies

● Organizer SoFloPHP (South Florida)

● Organizer SunshinePHP (Miami)

● Long distance (ultra) runner

● Photography Enthusiast

● Judo Black Belt Instructor

I am the
PHP Ninja!!!

Page  4

● I love iteration!
● Evolution.

● Learning to walk.

● Training to run.

● Evading project managers.

● Clean development.

Clean Application Development – Iteration

Page  5

● Clean application development cannot be taught in 45 minutes
● Practice, Practice, Practice.

● Leave the code better than you found it.

● Always watch for new techniques.

● No “silver bullet“.

Clean Application Development – Learning

Page  6

● A great resource on code quality.

Clean Application Development – Resources

Clean Code
By Robert C. Martin

Page  7

● Disasters happen, resulting in bad...
● It's easy

● Short deadlines

● Boss

● Laziness

● Lack of “how-to“

● Come back and clean later

● We are the cause!

Clean Application Development – Causes of bad...

Page  8

● Bad things starts innocently

● Hire a new
professional/developer

● Clean slate, no expectations

● Start a new project
● Initial output is quick and easy,

setting expectation

● Slows down over time

● Complexity increases

● Domino effect

Clean Application Development – Typical Scenario

Page  9

● Our responsibility to say “NO“
● Managers job = defend schedule and features

● Our job = defend the code

● Managers respect realistic reasons and explanations

Clean Application Development – Defend the code

Page  10

● Others judge us on our code
● We are @authors.

● 75% of time reading code

● Others read our code also
● And they talk about it!

● How developers talk about us = “CRED“

Clean Application Development – We are judged

And they talk about it!

Page  11

● Side-effects of bad code:
● Wasted Time

● Bugs

● Excessive debugging

● Procrastination

● Missed deadlines

● Technical debt

● Financial losses

Clean Application Development – Result of bad code

Page  12

● How we typically react to a dirty application:
● Padded estimates

● Developers Hide

● Become defensive

● Blame others/requirements

● Add developers

● Rewrite!

Clean Application Development – The aftermath

Page  13

● The problem with a rewrite:
● Development team split, old/new

● Legacy application enhanced

● New application Scope creep

● Is it done yet?

● Ends with more bad code!

Clean Application Development – Rewrite problems

Page  14

● Learn to Refactor.

Clean Application Development – Resources

Refactoring 101
By Adam Culp

Refactoring
By Martin Fowler

https://github.com/adamculp/refactoring101 https://refactoring101.com

Page  15

● With all of these problems, clean applications makes sense
● Shortens development time.

● On-boarding of developers easier.

● Less bugs.

● Happier end-users.

● Predictable schedules.

● It's the professional thing to do.

Clean Application Development – Common sense

Page  16

● Coding Standards save time
● Gives direction

● PHP Framework Interoperability Group (https://www.php-fig.org).

● Standard NOT important

● Unless it‘s public code
● Choose one
● Stick with it

● Consistency is key

Clean Application Development – Coding standards

Page  17

● Names should be clear
● Functions and variables should tell a story.

Clean Application Development – Clear names

$elapsedTimeInDays;
$daysSinceCreation;
$daysSinceModified;
$fileAgeInDays;

$elapsed;
$createdDays;
$modifiedDays;
$age;

GoodBad

Page  18

● Shy away from variations of the same name
● To ensure names are different enough to portray difference.

Clean Application Development – No confusion

$product
$productInfo
$productData
$productDescription

What is the difference between these?

Page  19

● Certain characters are hard to understand

Clean Application Development – Bad characters

Lower case L
Uppercase O (oh)
Uppercase I (eye)

Bad

Page  20

● Technical names help developers who actually read the code.

● Non-technical terms for client documentation.

● Class names should be nouns

● Describe.

● Ex. - Customer, Account, Product, Company.

● Method names should be verbs
● Action.

● Ex. - getCustomer, closeAccount, updateProduct, addCompany.

● Pick a set of keywords and stick with them.

● Ex. - fetch, get, add, update, remove, delete

Clean Application Development – Name grammar

Page  21

● More on Clean Code
● Functions:

● Short
● Single purpose
● As expected
● Well named

● Recognizing bad doesn't mean we know how to make good

● We know a good/bad song, but are not song writers
● Clean code = caring developer

● Does not require many comments

Clean Application Development – Clean code

Page  22

● Comments can also be a bad “smell“
● Comments are often used to cover up bad code.

● Code should be self-documenting

Clean Application Development – Code comments

Page  23

● How to spot bad code (smells)
● Incomplete error handling

● Memory leaks

● Race conditions

● Inconsistent naming convention (class, function, variable)

● Inconsistent coding standard

● Un-initialized variables

● Code lacks clear purpose

● Functions do too much (more than one thing)

● Globals used

● Too many comments in the code

● Notices, Warnings, Fatal Errors

Clean Application Development – Smells of bad code

Page  24

● Let PHP CodeSniffer detect bad smells
● Set rules to detect if coding standard is not followed

● Run during commits in version control

● IDE integration

Clean Application Development – Code sniffer

Page  25

● Peer code review great learning tool
● Peers help train each other on strong points.

● Fresh set of eyes.

● Builds better teams.

Clean Application Development – Peer code reviews

Page  26

● Standard and quick solutions to common coding problems
● Provide standard ways of dealing with common code problems.

● “Guide to PHP Design Patterns“ by Jason Sweat.

● “Design Patterns, Elements of Reusable Object-Oriented Software“ by Gang of
four

Clean Application Development – Design Patterns

Page  27

● Frameworks help keep things in line
● $evil = 'roll-your-own'

● Knowledge transfer
● Onboarding
● Insecure

● Allows our code to be lighter, simpler

● Does heavy lifting

● Most modern frameworks are:

● MVC
● Service driven
● Middleware

● STICK TO IT!!!

Clean Application Development – Frameworks

Page  28

● We can tell pretty simply this “looks“ like a library. (bookshelves,
computers, book categories)

Clean Application Development – Clear architecture

Page  29

● These are pretty obvious without any explanation.

Clean Application Development – Obvious purpose

Page  30

● This would take a bit more digging to figure out.

Clean Application Development – MVC architecture?

Page  31

● Framework evolution
● Component Libaries

● Full (kitchen sink) Stack

● MVC

● Micro

● Action → Response

● Component-ized

● Middleware

Clean Application Development – Evolution

Page  32

● Composer and Packagist
● Prevents NIH

● Standardized autoloading

● Easier upgrades

● Promotes OSS

● Faster onboarding

● Public and Private code

Clean Application Development – Dependencies

OR

Page  33

● Unit testing = parachute
● Each test = one thing

● Ensures system functioning

● Makes refactoring easier

● The “Way of Testivus“

Clean Application Development – Testing

Page  34

● Important things should be done first
● Write failing tests first, then write the code required to make it pass.

Clean Application Development – TDD

Page  35

● QA at the begining instead of the end
● QA waits for code to test.

● Create tests based on requirements, first.

● Developers write code to pass tests.

● The end is not so bad now.

Clean Application Development – QA and unit tests

Page  36

● Agile = Project Iteration
● Average sprint is 2 weeks

● At the end of the sprint EVERYTHING is “done“

● Tests
● Development
● Documentation

● Velocity charts, MAKE THEM PUBLIC

● Charts allow business to recover gracefully

Clean Application Development – Agile

Page  37

● Our clients hired a professional, they should get one
● Professionals are:

● Trusted
● Reliable estimates
● Quality
● Replaceable

● Promotable
● Documented
● Repeatable
● Vacation

● Use standards/conventions

Clean Application Development – Human resources

Page  38

● Clean application development is:
● Learning, repetition, practice.

● Clear architecture.

● Coding standards and styles.

● Framework and best practices.

● Testing.

● Agile.

● Learning to say “NO“, and defend the code.

● Living up to the title “Professional“

Clean Application Development – Close

Page  40

● Resources
● Adam Culp @adamculp

● http://www.GeekyBoy.com

● http://RunGeekRadio.com

● Book: “Clean Code“ by Robert C. Martin

● Book: “Refactoring“ by Martin Fowler

● https://github.com/adamculp/refactoring101

● Book: “Refactoring 101“ by Adam Culp http://refactoring101.com

● Book: “Guide to PHP Design Patterns“ by Jason Sweat

● Book: “Design Patterns“ by Gang of four

● http://www.php-fig.org

Clean Application Development – Resources

Thank You!

	Intro
	Slide 2
	Slide 3
	Love Iteration
	Keep Learning
	Important Books
	Causes
	Typical Scenario
	Defend the Code
	Judges
	Results
	Aftermath
	Rewrite Problems
	Slide 14
	Common Sense
	Coding Standards
	Clear Names
	No Confusion
	Bad Characters
	Name Grammar
	Clean Code
	Code Comments
	Smells
	Code Sniffer
	Peer Code Reviews
	Design Patterns
	Frameworks
	Architecture - Library
	Architecture - Ball fields
	MVC
	Slide 31
	Slide 32
	PHPUnit
	TDD
	QA
	Agile
	Be Professional
	Closing
	Resources

