Tip top JavaScript
Testing
@Jack Franklin

How to write good tests

Tests are only as
useful as the effort
you put into them.

It's Important your
application code
is well written and
maintainable.

You don't write tests for your
tests.

So your test code should be @

Unless you write
tests for your tests

But of course then
you heed tests for
your tests for your
tests

What makes a great unit test?

Browse — Thread X

< C o

Superuser menu ...

+
@& Thread Online Ltd. [GB]

* @ @ :

E3 Other Bookmarks

https://www.thread.com/items/browse/new_in?sorting=recommendedg&

[MEGAHelp [How to Install Zsh... JACK FRANKLIN L...

o Po Bp

Carbon Email Templates -...

&, Thread Drive - Go...

\de?

2-Step Verification

Shop

ALL ITEMS

FILTER: Brands Colours Price SORTBY: Personalised to me

Pier One
Smart Lace Shoes
£54.99

Barbour
Liddesdale Quilted Jacket
£99.95

Levi's
511® Slim Fit Jeans
£70

Superdry
Military Parka Jacket
£99.99

it('clearly says what is being tested',6 () => {
// 1. Setup

// 2. Invoke the code under test

// 3. Assert on the results of step 2.
})

describe(' finding items in a price range', () => {
it('returns the right set of items', =>
const dummyltems = [{ name: 'shirt', price: 2000 }, ...]

const result = itemFinder(dummyltems).min(1000).max(5000)

expect(result).toEqual(...)

})
})

You should be
able to look at a

single it test and
Know everything

Tests should have
no external
dependencies

Keeping unit tests
as a unit

If your tests can fail without

any of the code you're testing
changing, your test is not

properly isolated.

This is a huge cause of confusion
and frustration in large code bases.

®7 1 changed user . js but tests inblog_posts. js broke '!

Spies

(or mocks, but that doesn't make the picture
quite as good)

Mocking

Fake a function's implementation for the purpose of a test.

thread-events

Logging a user's actions across the site:

1. User 123 clicked on home_ feed
2. User 123 added item 456 to the cart
3. User 123 added a new shipping address

import threadkEventslLogger from 'thread-events—logger'

const processUserClickOnItem = (item) => {
threadEventsLogger.log('item_click', { item_id: item.id })

// does other stuff here too

)

threadkventslLogger:
external dependency!

describe('when the user clicks on the item', () => {
it('logs a thread-event',6 () => {
// what goes here?
})

1)
)

Option 1:

processUserClickOnItem({ id: 123 })

expect(frontendEventsLog| frontendEventslLog.length — 1]).toEqual ({
type: 'item_click',

})data: { item_id: item.id },

Option 2:

processUserClickOnItem({ id: 123 })

expect(threadEventslLogger. log).toHaveBeenCalledWith('item_click"', {
item_1id: 123,
})

Option 2 relies on

threadEventslLogger being
thoroughly unit tested itself.

don't test things
twice

Avoiding awkward browser
interactions in tests with
mocks

const redirectUser = user => {
if (user.authenticated) {
window. location.assign(' /home")

}oelse 1if (...) {

1 else {

_—
)

test('if the user is logged in they are taken to home', () =>
jest.spyOn(window.location, 'assign').mockImplementation(() => {});

redirectUser({ authenticated: true })

expect(window. location.assign).toHaveBeenCalledWith(' /home")

1)

Tidying up after
yourself

Mocks won't be automatically cleared
between tests

test('if the user is logged in they are taken to home', () =>
jest.spyOn(window.location, 'assign').mockImplementation(() => {})
redirectUser({ authenticated: true })
expect(window. location.assign).toHaveBeenCalledWith(' /home")

})

test('if the user is not logged out we do not redirect them', () => {
redirectUser({ authenticated: false })
expect(window. location.assign).not.toHaveBeenCalled()

1)

! the second test is going to fail!

o

beforeEach(() => {
jest.clearAl1Mocks()

y
1)

Mocks aremnﬁn

A
s§ i I t@pl ir

Mtoolkl'f

beforekach

beforeEach Is a great way to
run code before each test

But it can make a test hard to work with or debug.

it('filters the items to only shirts', () => {
const result = filterItems(items, 'shirts')
expect(result).toEqual(...)

1)

Where is items
coming from?

let 1tems
beforeEach(() => {
items = [{ name:

1)

'shirt’',

3 parts to a good test

it('filters the items to only shirts', () => {
const items = [{ name: 'shirt', ... }, ...]

const result = filterItems(items, 'shirts')

expect(result).toEqual(...)
})

it(() = |

const

})...
it(' ...
const

})...
it(' ...
const

})...
it(' ...
const

})...
it(' ...
const

})...
it(' ...
const

})...
it(' ...
const

b

items = [{

o0 =

items =

L, 0=

items =

0 =

items =

L0 =

items =

0 =

items =

0 =

items = [{

1

Nname .

Nname .

Nname .

Name .

Nname .

Nname .

Nname .

'shirt', ...

'shirt’', ...

'shirt', ...

'shirt’', ...

'shirt', ...

'shirt', ...

'shirt’', ...

Functions for test data

const getltems = () => [...]

it(.o () =

{
const items = getltems()

.

o= creation of test data is done for each test

s if the data has to change, we have one place to change it

Having consistent test data

It's important that test data resembles your real data.

You'll have a few domain objects that turn up in lots of tests.

At Thread we have the Item object.

In every test...

const dummyltem = {...}

Then, one day:

All items returned from our API have a new property:
'buttonType'

Now you have lots of outdated tests.

We can solve this with factories.

t-data-bot X +

ub, Inc. [US] | https://github.com/jacl

I ‘ https://github.com/jackfranklin/test-
jackfranklin / test-data-bot @uUnwatch~ 1 Kstar 46 YFork 3 d ata - bOt

<> Code Issues 1 Pull requests 0 Releases 4 More ¥ Settings

No description, website, or topics provided.

Manage topics

D 19 commits ¥ 1 branch © 4 releases 22 2 contributors

Branch: master v © 0.6.0 Create new file = Find file or do

jackfranklin 0.6.0 Latest commit caa23f4 on 3 Aug

src Entirely rebuilt 2 months ago
.eslintrc.js first test is passing 4 months ago
.gitignore first test is passing 4 months ago
CHANGELOG.md 0.6.0 2 months ago
README.md 0.5.0 2 months ago
package-lock.json package-lock 2 months ago
package.json 0.6.0 2 months ago

prettier.config.js first test is passing 4 months ago

test-data-bot

An easy way to generate test data for your JavaScript unit tests. Completely agnostic of test runner, framework or
environment.

npm install --save-dev test-data-bot

const { build, fake, sequence } = require('test-data-bot"')

export const itemBuilder = build('Item').fields({
brand: fake(f =»> f.company.companyName()),
colour: fake(f => f.commerce.color()),
images: |{
! medium: arrayOf(fake(f => f.image.imageUrl()), 3),

is_thread_own_brand: bool(),
name: fake(f =»> f.commerce.productName()),

price: fake(f => parseFloat(f.commerce.price())),
sentiment: oneOf('neutral', 'positive', 'negative'),
on_sale: bool(),

slug: fake(f => f.lorem.slug()),

1)

import { itemBuilder } from 'frontend/lib/factories'
const dummyltem = itemBuilder()

const dummyltemWithName = itemBuilder({ name: 'Oxford shirt' })

Avoiding brittle
tests

When | change the code I
have to change the tests
as well, so all tests do is

double the amount of
worR | have!

it('filters the items to only shirts', () =>
const shirtFinder = new ShirtFinder({ priceMax: 5000 })

expect(shirtFinder.__foundShirts).toEqual([])

expect(shirtFinder.getShirts()).toEqual(|[])
})

You should be
able to rewrite
code without
changing all your
tests.

Test thinhg/s 0)%
calling them just
;l,lf<e you do in real
ife

When writing nhew
tests, check that
they fail!

Can you spot the problem with this test?

describe('finding items in a price range', () => {
it('returns the right set of items', () =>
const dummyltems = [{ name: 'shirt',6 price: 2000 }, ...]

const result = itemFinder(dummyItems).min(1000).max(5000)

})
1)

Many test
frameworks will
pass a test without
an assertion!

expect.assertions(2)

If you write a test
and it passes first
time, try to break it

small

feedback

loops

Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked

Write code

this time needs to be short

Check if it worked

Write code

wait 5 seconds for webpack
manually refresh the browser
click the button you're working on

go back to your editor

Check if it worked

Write code

hit save in your editor

Run tests

Fixing bugs with short
feedback loops

There's a bug where the price filtering max price limit is not
used

1. Prove it in a failing test

it('filters by max price correctly', () => {
const items = [{ name: 'shirt', price: 3000 }]
expect(itemFinder({ maxPrice: 2000})).toEqual(|])

})

TEST FAILURE:

Expected [], got | { name: 'shirt',6 price: 3000 }]

2. Fix the bug

without changing
the test

3. Rerun the test
4

TEST PASSED
Expected [], got |[]

Confident
refactoring

-

Refactor

1: Write the test and see it fail.

2: Write whatever code it takes to make it pass.

3: Rewrite the code until you're happy, using the tests to
guide youl.

1: Write the test and see it fail.

2: Write whatever code it takes to
make it pass.

3: Rewrite the code until you're happy, using the tests to
guide youl.

1: Write the test and see it fail.

2: Write whatever code it takes to make it pass.

3: Rewrite the code until you're
happy, using the tests to guide you.

You should feel
sligntly
uncomfortable
when you have a

failing test.

Testing React

J§ Testing React with Enzyme an' X

@ Secure https://javascriptplayground.com/testing-react-enzyme-jest/

Testing React with Enzyme and Jest.

A video series to enable you to test React components

thoroughly, refactor with confidence and abstract logic

out of components.

Watch the first 5 videos for free, and pay just $20 for

the rest.

Watch now >> Buy the full bundle >>

Is this course for me?

If you're writing React in any capacity, this course if for
you! This course assumes a base level understanding of
React, but whether you're working on small React side
projects or full React applications at the day job, you'll
learn how to test a variety of React components.

No prior knowledge of testing or React specific testing is
required; we'll start from scratch and build up our testing
knowledge over this set of ten videos.

What will I learn?

See below for a full list of topics covered in the videos of
this course, but in a nutshell this course contains all you
need to be confident testing a variety of React
components. We'll cover:

¢ The roles that Jest and Enzyme play in writing React
tests.

+ How to test for Ul changes in React components using
Jest snapshots.

SUENEINEISS Ve p

You should buy my course on Testing React!

javascriptplayground.com/testing-
react-enzyme-jest/

- |
.
. ‘e

\
~ \
4

. 2" ’ - ~ | “ é'..
4 ,
v - » | .

A i What a deal!

ACKFRID};‘

>

a1

fy—

(for today only!)-‘f,‘j"é

<

Y

There is only one
rule for testing

React
components

How can I test hooks In
React?

You don't

A React
component's
contract is what it
shows to the user.

SO test your
components as if
you are a user.

YOUR TEST COMPONENT UNDER TEST

Which test is better?

const wrapper = mount(<«Button /»)
wrapper.find('a').simulate('click')
expect(wrapper.getState().isDisabled).toEqual(true)

Or:

const wrapper = mount(<Button />)
wrapper . find('button').simulate('click')
expect(wrapper. find('button').prop('disabled')).toEqual(true)

" Reaches into the component to read some state

expect(wrapper.getState().isDisabled).toEqual(

o Reads the component as the user would.

expect(wrapper. find() .prop()).toEqual(

)

)

You can use Enzyme, react-testing-
library or any alternative.

If you test as the user, you'll have good tests.

'/ The exact framework doesn't actually matter that much.

To conclude...

1. Remember what
makes a good
test: setup,
Invocation,
assertion

2. Avoid brittle
tests: test the
public contract,
not internal
details.

3. When it comes
to React, the

framework doesn't
matter if you test

lIke a user

If you liked this, you might like...

https://
www.youtube.com/

watch?v=z4DNI|VIOfjU

...with Kent C. Dodds (&) and myself

,——/'f

Come and find me if you have questions, or
tweet @Jack Franklin

