
!

Tip top JavaScript
Testing
@Jack_Franklin

How to write good tests

Tests are only as
useful as the effort
you put into them.

It's important your
application code
is well written and
maintainable.

You don't write tests for your
tests.
So your test code should be

!

Unless you write
tests for your tests

But of course then
you need tests for
your tests for your
tests

What makes a great unit test?

it('clearly says what is being tested', () => {
 // 1. Setup

 // 2. Invoke the code under test

 // 3. Assert on the results of step 2.
})

describe('finding items in a price range', () => {
 it('returns the right set of items', () => {
 const dummyItems = [{ name: 'shirt', price: 2000 }, ...]

 const result = itemFinder(dummyItems).min(1000).max(5000)

 expect(result).toEqual(...)
 })
})

You should be
able to look at a
single it test and
know everything

Tests should have
no external
dependencies

Keeping unit tests
as a unit

If your tests can fail without
any of the code you're testing
changing, your test is not
properly isolated.

This is a huge cause of confusion
and frustration in large code bases.
!

 I changed user.js but tests in blog_posts.js broke
‼

Spies

(or mocks, but that doesn't make the picture
quite as good)

Mocking
Fake a function's implementation for the purpose of a test.

thread-events
Logging a user's actions across the site:

1. User 123 clicked on home_feed
2. User 123 added item 456 to the cart
3. User 123 added a new shipping address

import threadEventsLogger from 'thread-events-logger'

const processUserClickOnItem = (item) => {
 threadEventsLogger.log('item_click', { item_id: item.id })

 // does other stuff here too
}

threadEventsLogger:
external dependency!

describe('when the user clicks on the item', () => {
 it('logs a thread-event', () => {
 // what goes here?
 })
})
}

Option 1:
processUserClickOnItem({ id: 123 })
expect(frontendEventsLog[frontendEventsLog.length - 1]).toEqual({
 type: 'item_click',
 data: { item_id: item.id },
})

Option 2:
processUserClickOnItem({ id: 123 })
expect(threadEventsLogger.log).toHaveBeenCalledWith('item_click', {
 item_id: 123,
})

Option 2 relies on
threadEventsLogger being
thoroughly unit tested itself.

don't test things
twice

Avoiding awkward browser
interactions in tests with
mocks
const redirectUser = user => {
 if (user.authenticated) {
 window.location.assign('/home')
 } else if (...) {
 ...
 } else {
 ...
 }
}

test('if the user is logged in they are taken to home', () => {
 jest.spyOn(window.location, 'assign').mockImplementation(() => {});

 redirectUser({ authenticated: true })

 expect(window.location.assign).toHaveBeenCalledWith('/home')
})

Tidying up after
yourself

Mocks won't be automatically cleared
between tests
test('if the user is logged in they are taken to home', () => {
 jest.spyOn(window.location, 'assign').mockImplementation(() => {})
 redirectUser({ authenticated: true })
 expect(window.location.assign).toHaveBeenCalledWith('/home')
})

test('if the user is not logged out we do not redirect them', () => {
 redirectUser({ authenticated: false })
 expect(window.location.assign).not.toHaveBeenCalled()
})

‼
 the second test is going to fail!

!

beforeEach(() => {
 jest.clearAllMocks()
})

Mocks are an
essential tool in a
developers'
testing toolkit

beforeEach

beforeEach is a great way to
run code before each test
But it can make a test hard to work with or debug.

it('filters the items to only shirts', () => {
 const result = filterItems(items, 'shirts')
 expect(result).toEqual(...)
})

Where is items
coming from?

let items
beforeEach(() => {
 items = [{ name: 'shirt', ... }, ...]
})

3 parts to a good test
it('filters the items to only shirts', () => {
 const items = [{ name: 'shirt', ... }, ...]

 const result = filterItems(items, 'shirts')

 expect(result).toEqual(...)
})

it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})
it('...', () => {
 const items = [{ name: 'shirt', ... }, ...]
 ...
})

Functions for test data

const getItems = () => [...]

it('...', () => {
 const items = getItems()
 ...
})
!

 creation of test data is done for each test
!

 if the data has to change, we have one place to change it

Having consistent test data
It's important that test data resembles your real data.

You'll have a few domain objects that turn up in lots of tests.

At Thread we have the Item object.

in every test...
const dummyItem = {...}

Then, one day:
!

 All items returned from our API have a new property:
'buttonType'
Now you have lots of outdated tests.

We can solve this with factories.

https://github.com/jackfranklin/test-
data-bot

export const itemBuilder = build('Item').fields({
 brand: fake(f => f.company.companyName()),
 colour: fake(f => f.commerce.color()),
 images: {
 medium: arrayOf(fake(f => f.image.imageUrl()), 3),
 },
 is_thread_own_brand: bool(),
 name: fake(f => f.commerce.productName()),
 price: fake(f => parseFloat(f.commerce.price())),
 sentiment: oneOf('neutral', 'positive', 'negative'),
 on_sale: bool(),
 slug: fake(f => f.lorem.slug()),
});

import { itemBuilder } from 'frontend/lib/factories'

const dummyItem = itemBuilder()

const dummyItemWithName = itemBuilder({ name: 'Oxford shirt' })

Avoiding brittle
tests

When I change the code I
have to change the tests
as well, so all tests do is
double the amount of
work I have!

objects have a contract: a
public API that they provide

it('filters the items to only shirts', () => {
 const shirtFinder = new ShirtFinder({ priceMax: 5000 })

 expect(shirtFinder.__foundShirts).toEqual([])

 expect(shirtFinder.getShirts()).toEqual([])
})

You should be
able to rewrite
code without
changing all your
tests.

Test things by
calling them just
like you do in real
life

When writing new
tests, check that
they fail!

Can you spot the problem with this test?
describe('finding items in a price range', () => {
 it('returns the right set of items', () => {
 const dummyItems = [{ name: 'shirt', price: 2000 }, ...]

 const result = itemFinder(dummyItems).min(1000).max(5000)
 })
})

Many test
frameworks will
pass a test without
an assertion!

expect.assertions(2)

If you write a test
and it passes first
time, try to break it

small

feedback
loops

Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked
Write code
Check if it worked

 Write code
this time needs to be short

Check if it worked

Write code
wait 5 seconds for webpack

manually refresh the browser

click the button you're working on

go back to your editor

Check if it worked

Write code
hit save in your editor

Run tests

Fixing bugs with short
feedback loops
There's a bug where the price filtering max price limit is not
used

1. Prove it in a failing test
it('filters by max price correctly', () => {
 const items = [{ name: 'shirt', price: 3000 }]
 expect(itemFinder({ maxPrice: 2000})).toEqual([])
})

‼

TEST FAILURE:

Expected [], got [{ name: 'shirt', price: 3000 }]

2. Fix the bug
without changing
the test

3. Rerun the test

✅

TEST PASSED
Expected [], got []

Confident
refactoring

Red
Green
Refactor

1: Write the test and see it fail.
2: Write whatever code it takes to make it pass.

3: Rewrite the code until you're happy, using the tests to
guide you.

1: Write the test and see it fail.

2: Write whatever code it takes to
make it pass.
3: Rewrite the code until you're happy, using the tests to
guide you.

1: Write the test and see it fail.

2: Write whatever code it takes to make it pass.

3: Rewrite the code until you're
happy, using the tests to guide you.

You should feel
slightly
uncomfortable
when you have a
failing test.

Testing React

<ShamelessPlug>
You should buy my course on Testing React!

javascriptplayground.com/testing-
react-enzyme-jest/

Use JACKFRIDAY to get 40% off
!

(for today only!)

There is only one
rule for testing
React
components

How can I test hooks in
React?

You don't

A React
component's
contract is what it
shows to the user.

So test your
components as if
you are a user.

Which test is better?
const wrapper = mount(<Button />)
wrapper.find('a').simulate('click')
expect(wrapper.getState().isDisabled).toEqual(true)

Or:
const wrapper = mount(<Button />)
wrapper.find('button').simulate('click')
expect(wrapper.find('button').prop('disabled')).toEqual(true)

!
 Reaches into the component to read some state

expect(wrapper.getState().isDisabled).toEqual(true)

!
 Reads the component as the user would.

expect(wrapper.find('button').prop('disabled')).toEqual(true)

You can use Enzyme, react-testing-
library or any alternative.
If you test as the user, you'll have good tests.
⁉

 The exact framework doesn't actually matter that much.

To conclude...

1. Remember what
makes a good
test: setup,
invocation,
assertion

2. Avoid brittle
tests: test the
public contract,
not internal
details.

3. When it comes
to React, the
framework doesn't
matter if you test
like a user

If you liked this, you might like...

 https://
www.youtube.com/
watch?v=z4DNlVlOfjU

...with Kent C. Dodds (
!

) and myself

!

Come and find me if you have questions, or
tweet @Jack_Franklin

