Select Star:
Flink SQL for Pulsar Folks

Marta Paes (@morsapaes)

Developer Advocate

@ ververica

Why Pulsar + Flink?

2 @morsapaes

®

2W eee

J. Doe o 1st

Whenever | see #ApacheFlink mentioned my brain builds an image of #ApacheSpark.
After all these years under influence of Spark, that's not a surprise. Same with
#ApachePulsar and #ApacheKafka (after years with Kafka). That made me think if I'm
the only one who considers Flink x Pulsar combo an attempt to "dethrone" Spark x
Kafka? And they are all from The Apache Software Foundation and fully open source!

.~
-~/

Like Reply

©

Why Pulsar + Flink?

©

Why Pulsar + Flink?

:

“Stream as a unified view on data”

4 @morsapaes

“Batch as a special case of streaming”

_/

©

Pulsar: Unified Storage

“Stream as a unified view on data”

e Pub/Sub messaging layer (Streaming)

e Durable storage layer (Batch)

P Query _—
Unified Storage
- | E (segments PubiSu
¢ < >
Past Now Future

e e
S —

[owmms | — ! [Sepmama][sgmems]

Credit: StreamNative

5 @morsapaes Learn more: Apache Pulsar as One Storage System for Both Real-time and Historical Data Analysis u.‘

https://medium.com/streamnative/apache-pulsar-as-one-storage-455222c59017
https://www.slideshare.net/streamnative/elastic-data-processing-with-apache-flink-and-apache-pulsar

Flink: Unified Processing Engine

“Batch as a special case of streaming”

e Reuse code and logic across batch and stream processing
e Ensure consistent semantics between processing modes
e Simplify operations

e Power applications mixing historic and real-time data

| 4— bounded query — 1| «—— bounded query ——1

| start of the stream *------ past | future — == ——=——-—-————— oo

Unified Processing Engine
(Batch / Streaming)

. <4—unbounded query

I 4—unbounded query
now

6 @morsapaes Learn more: Elink Ahead

: What Comes After Unified Batch and Streaming? @

https://youtu.be/h5OYmy9Yx7Y

A Unified Data Stack

Unified Storage
(Segments / Pub/Sub)

7 @morsapaes

Unified Processing Engine
(Batch / Streaming)

©

Flink is broad

U
R

8 I @morsapaes

Flink Runtime
Stateful Computations over Data Streams

Flink is broad

i"-

9 I @morsapaes

Flink Runtime
Stateful Computations over Data Streams

Use Cases

More high-level or domain-specific use cases can be modeled with SQL/Python and dynamic tables.

e Focus on business logic, not implementation
e Mixed workloads (batch and streaming)

e Maximize developer speed and autonomy

Uber criteol..

Unified Online/Offline Model Training E2E Streaming Analytics Pipelines ML Feature Generation

10 @morsapaes

®

https://youtu.be/gSRjTm4AHjk
https://youtu.be/WQ520rWgd9A
https://eng.uber.com/athenax/

Flink SQL

n @morsapaes

“Everyone knows SQL, right?”

SELECT user_id, COUNT(url) AS cnt
FROM clicks
GROUP BY user_id;

k/') This is standard SQL (ANSI SQL)

©

Flink SQL

12 @morsapaes

“Everyone knows SQL, right?”

SELECT user_id, COUNT(url) AS cnt
FROM clicks
GROUP BY user_id;

k/') This is standard SOL{ANSISOL)

also Flink SQL

©

A Regular SQL Engine

Take a snapshot when the
query starts

user | cTime | url____

N SELECT user_id,

A final result is
produced

Mary 12:00:00 https://... COUNT(url) AS cnt Mary 2

GROUP BY user_id;
Mary 12:00:02 https://...
./

A row that was added after the query
was started is not considered

13 @morsapaes

The query
terminates

©

A Streaming SQL Engine

Ingest all changes as
they happen

Continuously update the
result

e | e L e |
Mary 12:00:00 https://...

SELECT user_id, — Mary 2
--_—> CoNT(ur1) a5 cnt
CEb 1

Mary 12:00:02 https://... —» FROM clicks

GROUP BY user_id; Liz 1
Lz 120003 htpss. —

The result is identical to the one-time query (at this point)

14 @morsapaes

©

Flink SQL in a Nutshell

» Standard SQL syntax and semantics (i.e. not a “SQL-flavor”)
» Unified APIs for batch and streaming
« Support for advanced time handling and operations (e.g. CDC, pattern matching)

Execution Native Connectors Formats Data Catalogs
Qa
. 7 D
Streaming 3soN Q
Apache Kafka FileSystems Debezium ' SHIVE
Postgres

Metastore
TPC-DS Coverage At (JDBC)

a @ oic
UDF Support %
Kinesis
Y

N 4
Scala Elasticsearch

+

15 @morsapaes For an overview of supported operations, check the Flink documentation: Table API&SQL / SOL / Queries @

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sql/queries.html#operations

Pulsar Integration Over Time

Streaming Source/Sink Connectors

Table Sink Connector

Flink 1.6+
2018

16 @morsapaes Read more on Pulsar support in Flink 1.6+: When Flink & Pulsar Come Together @

https://flink.apache.org/2019/05/03/pulsar-flink.html

Pulsar Integration Over Time

Streaming Source/Sink Connectors

Table Sink Connector
Flink 1.9+

Flink 1.6+
2018

Pulsar Schema + Flink Catalog Integration
Table API/SQL as first-class citizens
Exactly-once Source

At-least once Sink

17 @morsapaes Read more on Pulsar support in Flink 1.9+: How to Query Pulsar Streams using Apache Flink @

https://flink.apache.org/news/2019/11/25/query-pulsar-streams-using-apache-flink.html

Pulsar Integration Over Time

Upserts (upsert-pulsar)

DDL Computed Columns, Watermarks and Metadata

Streaming Source/Sink Connectors End-to-end Exactly-once
Table Sink Connector Key-shared Subscription Model
Flink 1.9+
Flink 1.6+ Flink 1.12
2018

Pulsar Schema + Flink Catalog Integration
Table API/SQL as first-class citizens
Exactly-once Source

At-least once Sink

18 @morsapaes Read more on Pulsar support in Flink 1.12+: What's New in the Pulsar Flink Connector 2.7.0? @

https://github.com/streamnative/pulsar-flink#upsert-pulsar
https://github.com/streamnative/pulsar-flink#key-shared-subscription-mode
https://flink.apache.org/2021/01/07/pulsar-flink-connector-270.html

Pulsar Integration Over Time

Upserts (upsert-pulsar)

DDL Computed Columns, Watermarks and Metadata

Streaming Source/Sink Connectors End-to-end Exactly-once
Table Sink Connector Key-shared Subscription Model
Flink 1.13 *
Flink 1.6+ Flink 1.12
2018
Pulsar Schema + Flink Catalog Integration Contribution to the Apache Flink repository [FLINK-20726
Table API/SQL as first-class citizens Port connector to the new, unified Source API (FLIP-27)

Exactly-once Source

At-least once Sink

19 @morsapaes * For upcoming improvements to Flink SQL as a whole, check this Wiki page @

https://issues.apache.org/jira/browse/FLINK-20726
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface
https://cwiki.apache.org/confluence/display/FLINK/1.13+Release
https://github.com/streamnative/pulsar-flink#upsert-pulsar
https://github.com/streamnative/pulsar-flink#key-shared-subscription-mode

20

@morsapaes

How does this look like, in practice?

®

DEMO

1. Use the Twitter Firehose built-in connector to consume tweets about gardening & into a Pulsar topic (tweets).

morsapaesg

 Pulsar(bash) %1

local:flink-sql-pulsar (main *)$ D

i o oo 1|

16:37:45.473 [pulsar-client-io-1-1] INFO org.apache.pulsar.client.impl.ConsumerImpl - [tweets][test] Subscribed to topic on localhost/12

7.0.0.1:6650 -- consumer: @
16:37:52.186 [pulsar-client-io-1-1] INFO com.scurrilous.circe.checksum.Crc32cIntChecksum - SSE4.2 (RC32C provider initialized

s - got message -
key:[null], properties:[], content:{"id":1372225659821568000,"text": "@radishroot20@2 Soooo envious! We dug a smaller version of this last
autumn but so far have only beetles. " 5 KW3" g <a href=\"http://twitter.com/#!/download/ipad\" re
"nofollos witter for iPad","trunc ttrue,” 3 d":1477092500, row’s feet \uD83D\uDC99#FBPE #FBPPR #FBP/

atheist, centre-left tosser, art, #Rejoin \uD83C\uDDEA\uD83C\uDDFA" alse,

- got message -
key:[null], properties:[], content:{"id":1372225666356113412,"text": "@meltrue? This so cool! I've been doing some gardening but I have
killed about half of my plants. I'm still lear.. https://t.co/OKc6D@7Eyz","source":"<a href=\"https://mobile.twitter.com\" rel=\"nofollow
\">Twitter Web App</a runcated" :true, "user d":1308792227821281281, "name" : "BGF__12", "descriptiol ‘she/her, banner by @vanilla_dip

,"verified":false},"favorited":false, "retweeted":false,"lang":"en"}

- got message -

[null], properties:[], content:{"id":1372225720869646347,"text":"It’s sad. Mines like that because they need watering - in pots!","so
\"http vitter.com/download/iphone\" rel=\"nofollow\">Twitter for iPhone
oulbag5@grvs"”, "location”: "Cambride", "description”:"Caring sharing listene

alse, "lang
- got message
key:[null], propertie:], content:{"id":1372225750775005192, "text We're having some very cold mornings....Hellebore
Cinderella and I don't like it n#flowers #interGarden #gardening h. 3 r itter.com/download/iphone
itter for iPhon ,"truncated":false, "user": {"id":1146067339512692736, "name" : "location": "Cambride", "desc
aring sharing listener","verified":false},"favorited":false,"retweeted":false,"lang": "en"

Follow along with this example: https://github.com/morsapaes/flink-sgl-pulsar

https://pulsar.apache.org/docs/en/io-connectors/
https://github.com/morsapaes/flink-sql-pulsar

DEMO

2. Start the Flink SQL Client and use a Pulsar catalog to access the topic directly as a table in Flink.

SQL Client

~ Pulsar (com.dock.. 3¢ %1 Flink SQL (com.dock... %2 | -

Catalog DDL
CREATE CATALOG pulsar WITH (
"type' = 'pulsar',
"service-url' = 'pulsar://pulsar:6650",
‘admin-url' = 'http://pulsar:8080',
Welcome! Enter 'HELP;' to list all available commands. 'QUIT;' to exit.
‘format' = 'json'

Flink SQL> []);
B

22

®

DEMO

2.1. You can query the tweets topic off-the-bat using a simple SELECT statement — it's treated as a Flink table!

SQL Client

* Pulsar (com.dock.. 3% 31 Flink SQL (com.dock.. %2 | -

SQL Query Result (Table)

Refresh: 1 s Page: Last of 1 Updated: 16:54:38.846

createdAt i i & source

1372229856721784834 (NULL) RT @thefreckledrose: Her~ <a href="https://mobile.~
(NULL) 1372229874597777411 (NULL) RT @PicturedImage: Good ~ <a href="http://twitter.~

B Quit i Inc Refresh E Goto Page E Next Page :0: Open Row
P

E Refresh Dec Refresh Last Page Prev Page

©

DEMO

2.2. But then you find out that most Firehose events have a null createdTime

SQL Client

* Pulsar (com.dock.. 3% 31 Flink SQL (com.dock.. %2 | -

SQL Query Result (Table)

Refresh: 1 s Page: Last of 1 Updated: 16:54:38.846

createdAt i i & source

1372229856721784834 (NULL) RT @thefreckledrose: Her~ <a href="https://mobile.~
(NULL) 1372229874597777411 (NULL) RT @PicturedImage: Good ~ <a href="http://twitter.~

B Quit i Inc Refresh E Goto Page E Next Page :0: Open Row
P

E Refresh Dec Refresh Last Page Prev Page

24

. What now?

©

DEMO

3. One way to get a relevant timestamp is to use Pulsar metadata to get the publishTime (i.e. ingestion time).
Source Table DDL

CREATE TABLE pulsar_tweets (

publishTime TIMESTAMP(3) METADATA,
Read and use Pulsar message metadata
WATERMARK FOR publishTime AS publishTime - INTERVAL '5' SECOND

) WITH (
‘connector' = 'pulsar',
"topic' = 'persistent://public/default/tweets’,
‘value.format' = 'json',
'service-url' = 'pulsar://pulsar:6650',
‘admin-url' = 'http://pulsar:8080°',
'scan.startup.mode’' = 'earliest-offset’

)

LIKE tweets;] Derive schema from the original topic

25 @morsapaes Pulsar Flink connector repo: https://github.com/streamnative/pulsar-flink u'~

https://github.com/streamnative/pulsar-flink#pulsar-flink-connector

DEMO

4. Perform a simple windowed aggregation (count), and insert results into a new pulsar topic (tweets_agg).

Sink Table DDL Continuous SQL Query
CREATE TABLE pulsar_tweets_agg (INSERT INTO pulsar_tweets_agg
tmstmp TIMESTAMP(3), SELECT TUMBLE_START(publishTime, INTERVAL '10' SECOND) AS
tweet_cnt BIGINT wStart,
) WITH (COUNT(id) AS tweet_cnt
'connector'="pulsar’, FROM pulsar_tweets
"topic'="persistent://public/default/tweets_agg', GROUP BY TUMBLE(publishTime, INTERVAL '10' SECOND);

'value.format'="json',
'service-url'="'pulsar://pulsar:6650"',

"admin-url'="http://pulsar:8080"
)s

©

26 @morsapaes

http://pulsar:8080

DEMO

5. We'll get a count of the # of tweets in windows of 10 seconds (based on event timel).

¢ 2. Flink SQL (com.docker.cli)
 Pulsar (com.docker.cli) 81 | < Flink SQL (com.dock... 2 | * bash %3

Flink SQL> SELECT TUMBLE_START(publishTime, INTERVAL '1@' SECOND) AS wStart,
COUNT(id) AS tweet_cnt

> FROM pulsar_tweets

> GROUP BY TUMBLE(publishTime, INTERVAL '1@' SECOND);

>

©

There's a lot more to it!

Check out the Flink SOL Cookbook

09 Maintaining Materialized Views with Change Data Capture (CDC)

and Debezium

. This example will show how you can use Flink SQL and Debezium to

In the world of analytics, databases are still mostly seen as static sources
waiting to be queried. The reality is that most of the data stored in these ¢
so..why not stream it?

Change Data Capture (CDC) allows you to do just that: track and propage
Ahead-Log in Postgres) to downstream consumers. Debezium is a popule
Connector and 2) a set of "standalone" Flink CDC Connectors.

Let's get to it!

In this example, you'll monitor a table with insurance claim data related to
aggregated materialized view that is incrementally updated with the lat(
deploying Debezium, Kafka and Kafka Connect in this repository.

Pre-requisites

28 @morsapaes

, where we share hands-on examples, patterns, and use cases for Flink SQL.

05 Real Time Star Schema Denormalization (N-Way Join)

. In this recipe, we will de-normalize a simple star schema with an n-way temporal table join.

Star schemas are a popular way of normalizing data within a data warehouse. At the center of a star schema is a fact table whose rows

contain metrics, measurements, and other facts about the world. Surrounding fact tables :
metadata useful for enriching facts when computing queries.

You are running a small data warehouse for a railroad company which consists of a fact tal
(stations , booking_channels ,and passengers). All inserts to the fact table, and all up
Apache Kafka. Records in the fact table are interpreted as inserts only, and so the table is
(connector = kafka);. In contrast, the records in the dimensional tables are upserts bas
Kafka connector (connector = upsert-kafka).

With Flink SQL you can now easily join all dimensions to our fact table using a 5-way temp
arbitrary table (left input/probe site) and correlate each row to the corresponding row’s rel
input/build side). Flink uses the SQL syntax of FOR SYSTEM_TIME AS OF to perform this of
consistent, reproducible results when joining a fact table with more (slowly) changing dim:
is joined to its corresponding value of each dimension based on when the event occurred

Script

CREATE TEMPORARY TABLE passengers (

08 Detecting patterns with MATCH_RECOGNIZE

. This example will show how you can use Flink SQL to detect patterns in a stream of events with MATCH_RECOGNIZE .

A common (but historically complex) task in SQL day-to-day work is to identify meaningful sequences of events in a data set — also known
as Complex Event Processing (CEP). This becomes even more relevant when dealing with streaming data, as you want to react quickly to
known patterns or changing trends to deliver up-to-date business insights. In Flink SQL, you can easily perform this kind of tasks using the
standard SQL clause MATCH_RECOGNIZE .

Breaking down MATCH_RECOGNIZE

In this example, you want to find users that downgraded their service subscription from one of the premium tiers (type IN
('premium', ‘platinum')) to the basic tier.

Input

The input argument of MATCH_RECOGNIZE will be a row pattern table based on subscriptions . As a first step, logical partitioning and
ordering must be applied to the input row pattern table to ensure that event processing is correct and deterministic:

PARTITION BY user_id
ORDER BY proc_time

Output

https://github.com/ververica/flink-sql-cookbook

Thank youl!

Follow me on Twitter: @morsapaes

Learn more about Flink: https://flink.apache.org/

@ ververica

https://flink.apache.org/

