
© 2020 Ververica

Marta Paes (@morsapaes)

Developer Advocate

Select Star:

Flink SQL for Pulsar Folks

@morsapaes2

Why Pulsar + Flink?

J. Doe ● 1st

@morsapaes3

Why Pulsar + Flink?

@morsapaes4

Why Pulsar + Flink?

“Stream as a unified view on data”

“Batch as a special case of streaming”

@morsapaes5

Pulsar: Unified Storage

Learn more: Apache Pulsar as One Storage System for Both Real-time and Historical Data Analysis

Unified Storage
(Segments / Pub/Sub)

“Stream as a unified view on data”

Credit: StreamNative

● Pub/Sub messaging layer (Streaming)

● Durable storage layer (Batch)

https://medium.com/streamnative/apache-pulsar-as-one-storage-455222c59017
https://www.slideshare.net/streamnative/elastic-data-processing-with-apache-flink-and-apache-pulsar

@morsapaes6

Flink: Unified Processing Engine

Unified Processing Engine
(Batch / Streaming)

“Batch as a special case of streaming”

now

bounded query

unbounded query

past future

bounded query

start of the stream
unbounded query

Learn more: Flink Ahead: What Comes After Unified Batch and Streaming?

● Reuse code and logic across batch and stream processing

● Ensure consistent semantics between processing modes

● Simplify operations

● Power applications mixing historic and real-time data

https://youtu.be/h5OYmy9Yx7Y

@morsapaes7

A Unified Data Stack

Unified Processing Engine
(Batch / Streaming)

Unified Storage
(Segments / Pub/Sub)

@morsapaes8

Flink is broad

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

@morsapaes9

Flink is broad

Flink Runtime
Stateful Computations over Data Streams

Stateful
Stream Processing

Streams, State, Time

Event-Driven
Applications

Stateful Functions

Streaming
Analytics & ML

SQL, PyFlink, Tables

@morsapaes10

Use Cases

● Focus on business logic, not implementation

● Mixed workloads (batch and streaming)

● Maximize developer speed and autonomy

More high-level or domain-specific use cases can be modeled with SQL/Python and dynamic tables.

Examples

ML Feature GenerationUnified Online/Offline Model Training E2E Streaming Analytics Pipelines

https://youtu.be/gSRjTm4AHjk
https://youtu.be/WQ520rWgd9A
https://eng.uber.com/athenax/

@morsapaes11

Flink SQL

SELECT user_id, COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

This is standard SQL (ANSI SQL)

“Everyone knows SQL, right?”

@morsapaes12

Flink SQL

SELECT user_id, COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

This is standard SQL (ANSI SQL)

also Flink SQL

“Everyone knows SQL, right?”

@morsapaes13

A Regular SQL Engine

user cnt

Mary 2

Bob 1

SELECT user_id,

 COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

Take a snapshot when the
query starts

A final result is
produced

A row that was added after the query
was started is not considered

user cTime url

Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…
The query
terminates

@morsapaes14

A Streaming SQL Engine

user cTime url
user cnt

SELECT user_id,

 COUNT(url) AS cnt

FROM clicks

GROUP BY user_id;

Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

Bob 1

Liz 1

Mary 1Mary 2

Ingest all changes as
they happen

Continuously update the
result

The result is identical to the one-time query (at this point)

@morsapaes15

Flink SQL in a Nutshell

● Standard SQL syntax and semantics (i.e. not a “SQL-flavor”)

● Unified APIs for batch and streaming

● Support for advanced time handling and operations (e.g. CDC, pattern matching)

UDF Support

PythonJava

Scala

Execution

TPC-DS Coverage

BatchStreaming

For an overview of supported operations, check the Flink documentation: Table API&SQL / SQL / Queries

+

FormatsNative Connectors

Apache Kafka

Elasticsearch

FileSystems

JDBC HBase

+

Kinesis

Metastore
Postgres
(JDBC)

Data Catalogs

Debezium

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sql/queries.html#operations

@morsapaes16

Pulsar Integration Over Time

Flink 1.6+
2018

Streaming Source/Sink Connectors

Table Sink Connector

Read more on Pulsar support in Flink 1.6+: When Flink & Pulsar Come Together

https://flink.apache.org/2019/05/03/pulsar-flink.html

@morsapaes17

Pulsar Integration Over Time

Flink 1.6+
2018

Streaming Source/Sink Connectors

Table Sink Connector

Pulsar Schema + Flink Catalog Integration

Table API/SQL as first-class citizens

Exactly-once Source

At-least once Sink

Flink 1.9+

Read more on Pulsar support in Flink 1.9+: How to Query Pulsar Streams using Apache Flink

https://flink.apache.org/news/2019/11/25/query-pulsar-streams-using-apache-flink.html

@morsapaes18

Flink 1.12

Upserts (upsert-pulsar)

DDL Computed Columns, Watermarks and Metadata

End-to-end Exactly-once

Key-shared Subscription Model

Flink 1.6+
2018

Streaming Source/Sink Connectors

Table Sink Connector

Pulsar Integration Over Time

Pulsar Schema + Flink Catalog Integration

Table API/SQL as first-class citizens

Exactly-once Source

At-least once Sink

Read more on Pulsar support in Flink 1.12+: What's New in the Pulsar Flink Connector 2.7.0?

Flink 1.9+

https://github.com/streamnative/pulsar-flink#upsert-pulsar
https://github.com/streamnative/pulsar-flink#key-shared-subscription-mode
https://flink.apache.org/2021/01/07/pulsar-flink-connector-270.html

@morsapaes19

Flink 1.12Flink 1.6+
2018

Streaming Source/Sink Connectors

Table Sink Connector

Pulsar Integration Over Time

Pulsar Schema + Flink Catalog Integration

Table API/SQL as first-class citizens

Exactly-once Source

At-least once Sink

Flink 1.13 *
Apr/May’21

Contribution to the Apache Flink repository [FLINK-20726]

Port connector to the new, unified Source API (FLIP-27)

* For upcoming improvements to Flink SQL as a whole, check this Wiki page

Flink 1.9+

Upserts (upsert-pulsar)

DDL Computed Columns, Watermarks and Metadata

End-to-end Exactly-once

Key-shared Subscription Model

https://issues.apache.org/jira/browse/FLINK-20726
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface
https://cwiki.apache.org/confluence/display/FLINK/1.13+Release
https://github.com/streamnative/pulsar-flink#upsert-pulsar
https://github.com/streamnative/pulsar-flink#key-shared-subscription-mode

@morsapaes20

How does this look like, in practice?

@morsapaes21

DEMO

1. Use the Twitter Firehose built-in connector to consume tweets about gardening 🌿 into a Pulsar topic (tweets).

Follow along with this example: https://github.com/morsapaes/flink-sql-pulsar

https://pulsar.apache.org/docs/en/io-connectors/
https://github.com/morsapaes/flink-sql-pulsar

@morsapaes22

DEMO

2. Start the Flink SQL Client and use a Pulsar catalog to access the topic directly as a table in Flink.

SQL Client

CREATE CATALOG pulsar WITH (

 'type' = 'pulsar',

 'service-url' = 'pulsar://pulsar:6650',

 'admin-url' = 'http://pulsar:8080',

 'format' = 'json'

);

Catalog DDL

@morsapaes23

DEMO

2.1. You can query the tweets topic off-the-bat using a simple SELECT statement — it’s treated as a Flink table!

SQL Client

@morsapaes24

DEMO

2.2. But then you find out that most Firehose events have a null createdTime. What now?

Not cool. 👹

SQL Client

@morsapaes25

DEMO

3. One way to get a relevant timestamp is to use Pulsar metadata to get the publishTime (i.e. ingestion time).

Pulsar Flink connector repo: https://github.com/streamnative/pulsar-flink

CREATE TABLE pulsar_tweets (

publishTime TIMESTAMP(3) METADATA,

WATERMARK FOR publishTime AS publishTime - INTERVAL '5' SECOND

) WITH (

 'connector' = 'pulsar',

 'topic' = 'persistent://public/default/tweets',

 'value.format' = 'json',

 'service-url' = 'pulsar://pulsar:6650',

 'admin-url' = 'http://pulsar:8080',

 'scan.startup.mode' = 'earliest-offset'

)

LIKE tweets;

Source Table DDL

Derive schema from the original topic

Define the source connector (Pulsar)

Read and use Pulsar message metadata

https://github.com/streamnative/pulsar-flink#pulsar-flink-connector

@morsapaes26

DEMO

4. Perform a simple windowed aggregation (count), and insert results into a new pulsar topic (tweets_agg).

CREATE TABLE pulsar_tweets_agg (

tmstmp TIMESTAMP(3),

tweet_cnt BIGINT

) WITH (

 'connector'='pulsar',

 'topic'='persistent://public/default/tweets_agg',

 'value.format'='json',

 'service-url'='pulsar://pulsar:6650',

 'admin-url'='http://pulsar:8080'

);

Sink Table DDL

INSERT INTO pulsar_tweets_agg

SELECT TUMBLE_START(publishTime, INTERVAL '10' SECOND) AS

wStart,

 COUNT(id) AS tweet_cnt

FROM pulsar_tweets

GROUP BY TUMBLE(publishTime, INTERVAL '10' SECOND);

Continuous SQL Query

http://pulsar:8080

@morsapaes27

DEMO

5. We’ll get a count of the # of tweets in windows of 10 seconds (based on event time!).

@morsapaes28

There’s a lot more to it!

Check out the Flink SQL Cookbook, where we share hands-on examples, patterns, and use cases for Flink SQL.

https://github.com/ververica/flink-sql-cookbook

© 2020 Ververica

Follow me on Twitter: @morsapaes

Learn more about Flink: https://flink.apache.org/

Thank you!

https://flink.apache.org/

