
A Crash Course in
Service Mesh Solutions

A beginner’s guide

@melissajmckay

http://bit.ly/AirPodsLDNMicroservices

slides jfrog.com/shownotes

Melissa McKay
● Mom

● Developer

● Developer Advocate @ JFrog

● Self appointed UNConference

Advocate and Promoter:

JCrete (http://www.jcrete.org/)
JOnsen (http://jonsen.jp/)
JSpirit (https://jspirit.org)
JAlba (https://jalba.scot)
LavaOne/UnVoxxed Hawaii (https://voxxeddays.com/hawaii/)

http://www.jcrete.org/
http://jonsen.jp/
https://jspirit.org/
https://jalba.scot/
https://voxxeddays.com/hawaii/

Simple Rules

To maximize what you can get out of the unconference, simple rules apply. Wikipedia summarizes them nicely:

1. Whoever shows up are the right people
…reminds participants that they don’t need the CEO and 100 people to get something done, you need people who care.
And, absent the direction or control exerted in a traditional meeting, that’s who shows up in the various breakout sessions
of an Open Space meeting.

2. Whenever it starts is the right time
…reminds participants that spirit and creativity do not run on the clock.

3. Whatever happens is the only thing that could have
…reminds participants that once something has happened, it’s done—and no amount of fretting, complaining or otherwise
rehashing can change that. Move on.

4. Wherever it happens is the right place
…reminds participants that space is opening everywhere all the time. Please be conscious and aware.

5. When it’s over, it’s over
…reminds participants that we never know how long it will take to resolve an issue, once raised, but that whenever the
issue or work or conversation is finished, move on to the next thing. Don’t keep rehashing just because there’s 30 minutes
left in the session. Do the work, not the time.

http://www.jcrete.org/what-is-an-unconference_/

http://en.wikipedia.org/wiki/Open_Space_Technology
http://www.jcrete.org/what-is-an-unconference_/

What am I going to
get out of this?

● Understand the concepts

behind a service mesh

● Learn key differentiators

between solutions (Linkerd,

Istio)

● Develop an educated opinion

How did I get here?

Some history...

● A mis-behaving service
● Missing SLAs

X 100 requests X 1000 requests/endpoint /endpoint

How did I get here?

Some history...

● A mis-behaving service
● Missing SLAs

● Replicating the service under a load balancer did NOT solve the problem!

X 1000 requests/endpoint

How did I get here?

Some history...

● A mis-behaving service
● Missing SLAs

● Replicating the service under a load balancer did NOT solve the problem!

● Analyzed, determined issue & did some research on best way to solve...

X 10 requests X 100 requests/endpoint /endpoint

Architectural Solution
X 1000/endpoint

Request
Type A

Request
Type B

Architectural Solution
X 1000/endpoint

Request
Type A

Request
Type B

?

An API Gateway?

● Filter options for routing
● Enabled rolling upgrades
● Enabled traffic shifting &

rate limiting
● Ability to canary nodes
● Blue-green deployment

An API Gateway?

● Filter options for routing
● Enabled rolling upgrades
● Enabled traffic shifting &

rate limiting
● Ability to canary nodes
● Blue-green deployment

But what’s this?

Istio… I’ve heard of that!

How is it different?

https://dzone.com/articles/api-gateway-vs-service-mesh

“They can both handle service discovery, request routing, authentication, rate limiting, and monitoring, but there are
differences in architectures and intentions. A service mesh's primary purpose is to manage internal service-to-service
communication, while an API Gateway is primarily meant for external client-to-service communication.”

https://dzone.com/articles/api-gateway-vs-service-mesh

How is it different? What IS
this?

https://dzone.com/articles/api-gateway-vs-service-mesh

“They can both handle service discovery, request routing, authentication, rate limiting, and monitoring, but there are
differences in architectures and intentions. A service mesh's primary purpose is to manage internal service-to-service
communication, while an API Gateway is primarily meant for external client-to-service communication.”

https://dzone.com/articles/api-gateway-vs-service-mesh

A service mesh is a dedicated infrastructure layer
that controls service-to-service communication
over a network.

https://searchitoperations.techtarget.com/definition/service-mesh - Margaret Rouse,
Alex Gillis, WhatIs.com (January, 2019)

https://searchitoperations.techtarget.com/definition/service-mesh

A service mesh is a configurable, low‑latency
infrastructure layer designed to handle a high
volume of network‑based interprocess
communication among application infrastructure
services using application programming interfaces
(APIs).

https://www.nginx.com/blog/what-is-a-service-mesh/ - Floyd Smith & Owen Garrett,
NGINX (April, 2018)

https://www.nginx.com/blog/what-is-a-service-mesh/

tl;dr: A service mesh is a dedicated infrastructure
layer for making service-to-service communication
safe, fast, and reliable.

https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/ -
William Morgan, Buoyant (April, 2017)

https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/

A service mesh brings security, resiliency, and
visibility to service communications, so developers
don’t have to

https://www.infoworld.com/article/3402260/what-is-a-service-mesh-service-mesh-expl
ained.html - Josh Fruhlinger, InfoWorld (July, 2019)

https://www.infoworld.com/article/3402260/what-is-a-service-mesh-service-mesh-explained.html
https://www.infoworld.com/article/3402260/what-is-a-service-mesh-service-mesh-explained.html

The term service mesh is used to describe the
network of microservices that make up such
applications and the interactions between them.

https://istio.io/docs/concepts/what-is-istio/ - Istio (accessed September, 2019)

So what is a service mesh, really?

A service mesh is a separately managed distributed system that

handles common functions required and normally implemented by

services that do not concern the business logic of the service itself.

A real-life metaphor…. human circulatory system?

https://en.wikipedia.org/wiki/Circulatory_system

https://en.wikipedia.org/wiki/Circulatory_system

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery

● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability

● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting

● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking

● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting

● Load Balancing
● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing

● Authorization/Authentication
● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication

● Distributed Tracing

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

… legitimate solutions to all kinds of problems!

Why isn’t everyone using a service mesh???

“If you’re wondering about service mesh, you don’t need one. Period. If you’ve reached the scale and

microservice maturity level that requires a service mesh, you will be actively — perhaps desperately —

searching for a solution and it will be abundantly obvious that a service mesh is necessary.”

https://thenewstack.io/primer-the-who-what-and-why-of-service-mesh/ - Emily Omier (May, 2019)

“I think we have a tendency to chase the shiny object, in the sense that X company does Y, therefore I

must do Y, even though I don’t have any of X company’s problems.” - Matt Klein

https://thenewstack.io/primer-the-who-what-and-why-of-service-mesh/

Service Mesh Capabilities… and more coming!

● Service Discovery
● Observability
● Rate Limiting
● Circuit Breaking
● Traffic Shifting
● Load Balancing
● Authorization/Authentication
● Distributed Tracing

… legitimate solutions to all kinds of problems!

Back up… what problem are we trying to solve?

Matt Klein - Lyft engineer who started Envoy Proxy

Podcast: https://softwareengineeringdaily.com/2017/02/14/service-proxying-with-matt-klein/

Biggest Problems?: I vote for Observability
& Reliability

● Large numbers of services

● Diverse/Polyglot

● Different Communication Protocols

● Service/language specific libraries

● No standardization on logging or stats

How is a service mesh implemented?

DATA PLANE

This is the part that touches every request in the
system.

Sidecar proxies.

● All service communication (ingress &
egress) routed through proxies

● The proxy acts as a gateway to the service

How is a service mesh implemented?

CONTROL PLANE

This is the part that manages the data planes -
providing them with the data and configuration

needed by the system.

UI, CLI or some other interface where an operator

can set configuration settings.

I’m ready to try it! Where do I start?

ENVOY: https://www.envoyproxy.io/learn/ https://www.envoyproxy.io/docs/envoy/latest/start/start

LINKERD: https://linkerd.io/2/getting-started/

ISTIO: https://istio.io/docs/setup/install/kubernetes/

https://www.envoyproxy.io/learn/
https://www.envoyproxy.io/docs/envoy/latest/start/start
https://linkerd.io/2/getting-started/
https://istio.io/docs/setup/install/kubernetes/

Prereqs to play

● Docker

● Docker Compose

● Kubernetes basics

● Helm charts/templates

● Get used to YAML if you aren’t already

Pay attention to versioning, of course!
Definitely up your CPUs to 4 and memory to 8 GiB if you use Docker Desktop.

https://azure.microsoft.com/en-us/resources/kubernetes-learning-path/

https://azure.microsoft.com/en-us/resources/kubernetes-learning-path/

Istio

● Go

● Apache 2.0 license

● Designed for extensibility, but might come

at the cost of complexity

● Modular, pluggable

● Supports HTTP 1.1, HTTP2, gRPC, and TCP

● Support for Kubernetes, VMs

OVER 40 EXAMPLES available to play with
different features!!!

● Backed by Google, RedHat & IBM

● The quick install was easy, but choosing

another type of install or configuration felt

a little like choose your own adventure.

● Great documentation

● There are a TON of online tutorials, etc

ISTIO: https://istio.io/docs/setup/install/kubernetes/

https://istio.io/docs/setup/install/kubernetes/

Istio

https://istio.io/docs/concepts/what-is-istio/

Linkerd2

● Go/Rust

● Apache 2.0 license

● Supported by Cloud-Native Computing

Foundation

● Data & Control Plane tightly integrated

(less modular, but smooth)

● VERY easy to install and get it up and

running

● Several examples are available to try out

key features

● Intended for Kubernetes

● Supports HTTP 1.1, HTTP2, gRPC, and TCP

● Not as feature rich as Istio, but is a very

active project (weekly edge releases, 6-8

week stable releases)

● Latest updates (2.9): Distributed tracing,

traffic shifting (blue/green, canaries), telemetry,
retries, timeouts, proxy auto-injection, mTLS on
by default for all TCP

● Excellent documentation

LINKERD: https://linkerd.io/2/getting-started/

https://linkerd.io/2/getting-started/

Linkerd2

https://linkerd.io/2/reference/architecture/index.html

https://linkerd.io/2/reference/architecture/index.html

https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://github.com/kinvolk/service-mesh-benchmark/issues/5

https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd/
https://github.com/kinvolk/service-mesh-benchmark/issues/5

Quick Compare - Istio AND Linkerd2

● Supports Kubernetes

● Apache 2.0 license

● Side Car Pattern Deployment

● Control Plane written in Go

● Supported Protocols - HTTP1.1, HTTP2, gRPC, TCP

● Similar traffic control & monitoring features

● Helm Chart support

● mTLS support

Quick Compare - Differences

ISTIO

● Data plane: Envoy (C++), or others (Nginx)
● Higher performance overhead

● Pluggable/Modular

Generally more Complex Setup

LINKERD2

● Data plane: Native (Rust)
● Lower performance overhead

● Opinionated/Tightly Coupled

Generally Simple Setup

Comparison Chart: https://dzone.com/articles/service-mesh-comparison-istio-vs-linkerd

https://dzone.com/articles/service-mesh-comparison-istio-vs-linkerd

What next?

EXPLORE OTHERS!

This space is growing fast and getting a lot of attention - one might presume this means there is a definite
need in the market, so it’s definitely worth checking out.

Service Mesh Interface (SMI):
A standard interface for service meshes on Kubernetes.
https://smi-spec.io/

https://smi-spec.io/

Conclusion

Choose a solution that addresses REAL problems you need to solve for your system.

Consider your developers.

Consider your codebase.

Consider the performance cost.

Evaluate MULTIPLE solutions - don’t simply jump on a bandwagon.

The whole idea of a service mesh is pretty cool!

THANK YOU!
Q & A

http://bit.ly/AirPodsLDNMicroservices

Don’t forg
et!

