Let's Break Stuff

Content Security Policies

Because you all totally care about this, right?!

About me

» Senior Software Engineer at Viva IT
(those folks in orange hoodies at some conferences & events
you may have been to)

» @Brunty
» @PHPem
» mfyu.co.uk

» matt@mfyu.co.uk

CSP: Let's Break Stuff @Brunty

Blah blah... just get on with the talk

Things | do

» Dungeon master for D&D campaigns

» Mentor, lead & teach apprentices & junior developers
» Run & organise PHP East Midlands

» Speak at user groups and conferences

» Break production sites with incorrectly configured content
security policies

CSP: Let's Break Stuff @Brunty

Disclaimer-
| don't work with WordPress

Oh good, finally we're getting started

Atalk in 3 parts

» XSS

» CSP

» Break stuff

CSP: Let's Break Stuff @Brunty

The scary stuff

First, some background

What is Cross-Site-Scripting (XSS)?

» XSS enables an attacker to inject client-side scripts into non-
malicious web pages viewed by other users

» In 2016 there was a 61% likelihood of a browser-based
vulnerability being found in a web application

» Of those browser based vulnerabilities, 86% were found to be
XSS related

» That's just over 52% of all web application vulnerabilities

https://www.edgescan.com/assets/docs/reports/2016é-edgescan-stats-report.pdf

CSP: Let's Break Stuff @Brunty

| mean, it's just a joke vulnerability, right?!

What can he done with X557

» Put pictures of cats in web pages

» Rickroll a user

» Twitter self-retweeting tweet
https://www.youtube.com/watch?v=zvOkZKC6GAM

» Samy worm

https://en.wikipedia.org/wiki/Samy (computer worm)

CSP: Let's Break Stuff @Brunty

Well... maybe it's not a joke vulnerability

What can be done with X557

» Make modifications to the DOM
» Load additional scripts, resources, styles, images etc
» Access HTMLS APIs - webcam, microphone, geolocation

» Steal cookies (and therefore steal session cookies)

CSP: Let's Break Stuff @Brunty

Use global default (Ask)

Camera Allow
Always block on this site
Microphone Allow Microphone Allow &

Notifications Ask (default) Notifications Ask (default)
JavaScript Allow (default) JavaScript Allow (default) ¢
Flash Ask (default) Flash Ask (default) ¢
Images Allow (default) Images Allow (default) ¢
Popups Block (default) Popups Block (default) ¢
Background Sync Allow (default) Background Sync Allow (default) ¢

Automatic downloads Ask (default) Automatic downloads Ask (default) &

MIDI devices full control Ask (default) MIDI devices full control Ask (default) J

CSP: Let's Break Stuff @Brunty

It's really not a joke vulnerability

KEVIN POULSEN SECURITY 03.28.08 08:00 PM

HACRERY ASSAULL EPILEPSY

PATIENTS VIA COMPUTER

https://www.wired.com/2008/03/hackers-assault-epilepsy-patients-via-computer/

CSP: Let's Break Stuff @Brunty

Types of XSS attack

Stored XSS (AKA Persistent or Type)

» Occurs when input is stored - generally in a server-side
database, but not always

» This could also be within a HTML5 database, thus never being
sent to the server at all

» who.is was a site Rickrolled by a TXT record in the DNS of a
website (yes, really)

CSP: Let's Break Stuff @Brunty

Types of XSS attack

Reflected XSS (AKA Non-persistent or Type i)

» Occurs when user input provided in the request is immediately
returned - such as in an error message, search string etc

» Data is not stored, and in some instances, may not even reach
the server (see the next type of XSS)

CSP: Let's Break Stuff @Brunty

Types of XSS attack

DOM-Based XSS (AKA Type-0)

» The entire flow of the attack takes place within the browser

» For example, if JavaScript in the site takes input, and uses
something like document.write based on that input, it can be

vulnerable to a DOM-based XSS attack

CSP: Let's Break Stuff @Brunty

Types of XSS attack

Self XSS

» Social-engineering form of XSS
» Requires the user to execute code in the browser
» Doing so via the console can't be protected by a lot of methods

» Not considered a ‘true’ XSS attack due to requiring the user to
execute the code

CSP: Let's Break Stuff @Brunty

x I [T] ¢ D (131 A105MB (D1.07s (E4 3 Qv

ﬁ Elements @ Network D Resources @ Timelines {D Debugger S Storage Console +

Q- m Errors Warnings Logs @]

Stop!

This is a browser feature intended for developers. If someone told you to copy and paste
something here to enable a Facebook feature or "hack" someone's account, it is a scam and

will give them access to your Facebook account.

See https://www.facebook.com/selfxss for more information.

Main Frame _

CSP: Let's Break Stuff @Brunty

. Let's Break Stuff

What is a CSP?

HTTP response header to help reduce
XSS risks

What is a CSP?

It 1s not a silver hullet

What is a CSP?

It Is an extra layer of security

How does a CSP work?

It declares what resources are allowed
to load

CSP: Let's Break Stuff @Brunty

Browser support

Header & Chrome © FireFox @ Edge

Content-Security-Policy 40+ Full January 2015 31+ Partial Edge 15 build 15002+
July 2014

Content-Security-Policy 23+ Edge 12 build 10240+

X-Content-Security-Policy 4+ 10+ Limited 12+ Limited

Meh, It's alright(ish)
Sorry IE users

X-Webkit-CSP

CSP: Let's Break Stuff @Brunty

CSP to the rescue!

What can we protect?

» default-src
» script-src

» style-src

» Img-src

» form-action

» update-insecure-requests

CSP: Let's Break Stuff @Brunty

Full reference:

https://content-security-policy.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

CSP: Let's Break Stuff @Brunty

img-src *

Allows any URL except data: blob:
filesystem: schemes.

object-src 'none’

Don't load resources from any
source

CSP: Let's Break Stuff @Brunty

style-src ‘self’

Allow loading from same scheme,
host and port

CSP: Let's Break Stuff @Brunty

script-src 'unsafe-inline’

Allows use of Inline source
elements such as style attribute,
onclick, or script tag bodies

CSP: Let's Break Stuff @Brunty

Jon 't use unsafe-inline

CSP: Let's Break Stuff @Brunty

script-src 'self' 'nonce-$RANDOM'

<script nonce="$RANDOM">...</script>

CSP: Let's Break Stuff @Brunty

Content-Security-Policy: default-src 'none'; script-
src 'self' https://*.google.com 'nonce-randoml23';
style-src 'self'; img-src 'self'; upgrade-insecure-

requests; form-action 'self’;

CSP: Let's Break Stuff @Brunty

Learn from my mistakes

| broke production with a bad CSP

CSP: Let's Break Stuff @Brunty

Jon't do what | did

Report-UR

CSP: Let's Break Stuff @Brunty

When a policy failure occurs, the

browser sends a JSON payload to
that URL

"csp—report": {
"blocked-uri": "self",
"document—-uri": "https://mysite.com",
"line—-number": 1,
"original-policy": "script-src 'self'",
"script-sample": "try { for(var lastpass_iter=0; lastpass...",
"source-file": "https://mysite.com",

"violated-directive": "script-src ‘self'"

CSP: Let's Break Stuff @Brunty

report-uri.io

CSP: Let's Break Stuff @Brunty

Directive

All

script-src

script-src

script-src

script-src

script-src

script-src

Blocked URI

https://disqus.com/next/config.js

eval

https://c.disquscdn.com/next/embed/
common.bundle.8acee1de90e869efd
b244e45c7f66630.js

eval

https://c.disquscdn.com/next/embed/
lounge.bundle.9becee0326ce4d1840f
8985f1dc0ce21.js

CSP: Let’s Break Stuff

show/hide

show/hide

show/hide

show/hide

show/hide

show/hide

@Brunty

Report-only

CSP: Let's Break Stuff @Brunty

Content-Security-Policy-Report-0Only: [policy]; report-
urt https://app.report-urti.io/r/default/csp/reportOnly;

CSP: Let's Break Stuff @Brunty

Trial stuff before
Enforcing

There will be noise,
lots of noise

Ways to make dealing with a CSP easier

Tips

» Have an easy and quick way to disable the CSP in production if
required

» Better yet, have a way to switch it from enforced to report only
so you can get violations reported to help you debug

» Add the CSP at an application level if you need a nonce

CSP: Let's Break Stuff @Brunty

Ways to make dealing with a CSP easier

Multiple policies

» They complicate things

» For a resource to be allowed, it must be allowed by all policies
declared (problematic if an enforced policy)

» | tend to avoid them where possible on enforced policies

» But with report-only mode they can be very useful to deploy
and test multiple policies at the same time (as nothing breaks
for the user)

CSP: Let's Break Stuff @Brunty

Ways to remove barriers in development

Cryptographic nonces

» Don’t generate multiple nonces in the same request (but do
generate a new nonce on each separate request)

» If using a templating engine (such as twig) - add the nonce as a
global so it's available in every template by default

» Write a helper in your template engine to generate script tags
with a nonce if it's available

CSP: Let's Break Stuff @Brunty

The problem with CSPs
and CMSs

Plugins

CSP: Let's Break Stuff @Brunty

Inline scripts (without
nonces) are the enemy

Troy Hunt

CSP: Let's Break Stuff @Brunty

Scott Helme

CSP: Let's Break Stuff @Brunty

Inline scripts (without
nonces) are the enemy

Jemo time!
Let's break stuff

@scott helme

He knows his stuff!

@mr_goodwin

He first introduced me to
whata CSP Is

Homework time!

Links & further reading

» https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
» https://content-security-policy.com
» https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

» https://report-uri.io

» bhttps://www.edgescan.com/assets/docs/reports/2016-edgescan-stats-report.pdf

» http://theharmonyguy.com/oldsite/2011/04/21/recent-facebook-xss-attacks-show-increasing-

sophistication/

» https://github.com/Brunty/csp-demo

CSP: Let's Break Stuff @Brunty

Thank you

CSP: Let's Break Stuff @Brunty

Questions?

@Brunty
@PHPem

mfyu.co.uk
matt@mfyu.co.uk

