
Modular
CSS

Scott Vandehey — @spaceninja — Devsigner 2016

FridayFrontEnd.com

@fridayfrontend

CSS at Scale
is Difficult

–Nicolas Gallagher, @necolas

“Replace ‘can you build this?’ with
‘can you maintain this without
losing your minds?’”

goo.gl/ZHCkDu

https://goo.gl/ZHCkDu

goo.gl/NcVzZ3

Difficult to Understand
<div class=“box profile pro-user">

 <p class="bio">...</p>

</div>

http://goo.gl/NcVzZ3

Difficult to Reuse
• You want to re-use a style from

another page, but it’s written in a
way that only works on that page

• You don’t want to break the original,
so you duplicate the code

• Now you have two problems

Difficult to Maintain
• You change the markup and the

whole thing breaks

• You want to change a style on one
page and it breaks on another

• You try to override the other page,
but get caught in a specificity war

Two CSS properties walk into a bar.

A table in a bar across town collapses.

Thomas Fuchs
@thomasfuchs

goo.gl/wScTMY

https://goo.gl/wScTMY

Modularity
What does that even mean?

–Harry Roberts, @csswizardry

“Code which adheres to the separation
of concerns can be much more
confidently modified, edited, extended,
and maintained because we know how
far its responsibilities reach. We know
that modifying layout, for example, will
only ever modify layout—nothing else.”

goo.gl/saNjgt

http://goo.gl/saNjgt

credit: goo.gl/YAL28V

https://goo.gl/YAL28V

credit: goo.gl/YAL28V

https://goo.gl/YAL28V

Remind you of anything?

credit: Alan Chia, goo.gl/KwJ17v

https://goo.gl/KwJ17v

credit: goo.gl/NOIjdw

https://goo.gl/NOIjdw

Media Block
Smaller Subheading
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna

Media Block Right
Smaller Subheading
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna

“The Media Object Saves Hundreds of Lines of Code,” goo.gl/3bi2fS

http://goo.gl/3bi2fS

credit: goo.gl/3bi2fS

http://goo.gl/3bi2fS

OOCSS
Object Oriented CSS

goo.gl/aqZjc5

OOCSS
• Created by Nicole Sullivan in 2009

based on her work at Yahoo

• Key concept: Objects are reusable
patterns whose visual appearance is
not determined by context

https://goo.gl/aqZjc5

–Nicole Sullivan, @stubbornella

“a CSS ‘object’ is a repeating visual
pattern, that can be abstracted into
an independent snippet of HTML,
CSS, and possibly JavaScript. That
object can then be reused
throughout a site.”

credit: John Morrison, goo.gl/AZBz7y

https://goo.gl/AZBz7y

goo.gl/aqZjc5

OOCSS: Context
• An object should look the same no

matter where you put it

• Objects should not be styled based
on their context

https://goo.gl/aqZjc5

goo.gl/aqZjc5

OOCSS: Skins
• Abstract the structure of an object

from the skin that is being applied

• Create reusable classes for common
visual styles like drop shadows

https://goo.gl/aqZjc5

goo.gl/aqZjc5

OOCSS: Use Classes
• Use classes to name your objects

and their components so markup
can change without impacting style

• eg, .site-nav not header ul

https://goo.gl/aqZjc5

goo.gl/aqZjc5

OOCSS: No IDs
• They mess up specificity because

they are too strong

• They are unique identifiers, which
means components built with them
are not reusable on the same page

https://goo.gl/aqZjc5

BEM
Block, Element, Modifier

goo.gl/95LCw5

BEM
• Created in 2009 by Russian internet

company Yandex who faced similar
problems to Yahoo using CSS at scale

• Key concept: Blocks (objects) are
made of smaller elements and can
be modified (skinned)

https://goo.gl/95LCw5

–Varya Stepanova, @varya_en

“BEM is a way to modularize
development of web pages. By
breaking your web interface into
components… you can have your
interface divided into independent
parts, each one with its own
development cycle.”

goo.gl/95LCw5

BEM: Blocks
• Logically & functionally independent

components

• Nestable: Blocks can be nested inside other
blocks

• Repeatable: An interface can contain
multiple instances of the same block

https://goo.gl/95LCw5

goo.gl/95LCw5

BEM: Elements
• A constituent part of a block that

can't be used outside of it

• For example, a menu item is not used
outside the context of a menu block

https://goo.gl/95LCw5

goo.gl/95LCw5

BEM: Modifiers
• Defines the appearance and

behavior of a block or an element

• For instance, the appearance of the
menu block may change depending
on a modifier that is used on it

https://goo.gl/95LCw5

.minifig

.minifig

 .minifig__head

 .minifig__headgear

 .minifig__backpack

 .minifig__torso

 .minifig__legs

.minifig--red

 .minifig__head

 .minifig__headgear

 .minifig__backpack

 .minifig__torso

 .minifig__legs

.minifig--yellow-new

 .minifig__head

 .minifig__headgear

 .minifig__backpack

 .minifig__torso

 .minifig__legs

.minifig--batman

 .minifig__head

 .minifig__headgear

 .minifig__backpack

 .minifig__torso

 .minifig__legs

goo.gl/95LCw5

BEM: Naming

• Names are written in lower case

• Words within names are separated by hyphens (-)

• Elements are delimited by double underscores (__)

• Modifiers are delimited by double hyphens (--)

.block-name__elem-name--mod-name

https://goo.gl/95LCw5

goo.gl/95LCw5

BEM: Example

 $9.99

 Subscribe

https://goo.gl/95LCw5

goo.gl/95LCw5

BEM: No Nested CSS
• Nested selectors increase

specificity, making code reuse more
difficult.

• Really only appropriate for styling
elements based on the state of a
block or its modifier.

https://goo.gl/95LCw5

SMACSS
Scalable & Modular Architecture for CSS

(pronounced “smacks”)

goo.gl/nO1m99

SMACSS
• Created by Jonathan Snook in 2011.

He had experience writing CSS at
scale, including Yahoo Mail

• Key concept: Different categories of
objects need to be handled differently

https://goo.gl/nO1m99

–Jonathan Snook, @snookca

“At the very core of SMACSS is
categorization. By categorizing
CSS rules, we begin to see patterns
and can define better practices
around each of these patterns.”

credit: elidr, goo.gl/Te8zQI

https://goo.gl/Te8zQI

goo.gl/nO1m99

SMACSS: Categories
1. Base rules are default styles for things like links,

paragraphs, and headlines

2. Layout rules divide the page into sections, hold one
or more modules together

3. Modules are the reusable, modular parts of a
design. Callouts, sidebar sections, product lists, etc.

4. State rules describe how modules or layouts look in
a particular state. Hidden, expanded, active, etc.

https://goo.gl/nO1m99

goo.gl/nO1m99

SMACSS: Naming
• Use prefixes to differentiate

between different types of rules:

• l- for layout rules

• m- for module rules

• is- for state rules

https://goo.gl/nO1m99

OOCSS
& BEM
& SMACSS
= Modular

Modular CSS
• These methodologies are 

more alike than different

• Their evolution represents our industry’s
growing experience with CSS at scale

• We don’t have to limit ourselves. Look at
what they share and keep the best parts

Modular Elements
• Module: a reusable pattern 

(aka Object, Block)

• Child Element: discrete piece of the
module that can’t stand alone

• Module Modifier: alters the visual
appearance of a module

goo.gl/nO1m99

Modular Categories
1. Base rules are default styles for HTML elements

2. Layout rules control how modules are laid out, but
not visual appearance: .l-centered

3. Modules are visual styles for reusable, self-
contained UI components: .m-profile

4. State rules are added by JavaScript: .is-hidden

5. Helper rules are small in scope and unconnected to
modules: .h-uppercase

https://goo.gl/nO1m99

Modular Rules
• Don’t use IDs

• Don’t nest CSS deeper than one level

• Add classes to child elements so
you’re not tied to specific markup

• Prefix class names so you can tell at
a glance what a class does

FAQ

So many classes!
• Having lots of classes might look ugly, 

but it doesn’t hurt performance

• Carefully scoped classes help others 
combine your lego blocks in new ways

• Don’t be afraid of long class names. 
They’re self-documenting!

Grandchild classes?
.minifig

 .minifig__arm

 .minifig__arm__hand

 .minifig__hand

Module conflicts?
• Modules shouldn’t overlap much

• You should be able to load modules
in any order

• Consider an !important helper class

Your daily reminders that
components aren't about reuse,
they're about isolation.

Reuse is a useful emergent
property of isolation.

Trek Glowacki
@trek

goo.gl/CKG3W9

https://goo.gl/CKG3W9

Flexbox modules?
• It’s tricky to make layout modules

using flexbox

• If you’re not careful, you’ll find
yourself making modifiers for every
single flex option

• ¯_(ツ)_/¯

Preprocessors?
• Modular CSS is more of a philosophy

than a framework

• As a result, it works with any
preprocessor (or not) that you need

Bootstrap?
• Bootstrap is a pattern library, not a

methodology

• That said, it’s built in a modular way:

• .btn .btn-primary .btn-sm

Recap
Modular CSS is dope

goo.gl/NcVzZ3

Remember This?
<div class=“box profile pro-user">

 <p class="bio">...</p>

</div>

http://goo.gl/NcVzZ3

goo.gl/NcVzZ3

Self-Documenting
<div class=“box profile profile--is-pro-user">

 <p class="profile__bio">...</p>

</div>

http://goo.gl/NcVzZ3

Modular Benefits
• Simplifies code and facilitates

refactoring

• Self-documenting code

• Reusable code that doesn’t influence
outside its own scope

• Naturally leads to a pattern library

Modular Benefits

• Predictable

• Maintainable

• Performant

Two CSS properties walk into a bar.

A table in a bar across town collapses.

Everything is fine, thanks to modular
code and proper namespacing.

goo.gl/wScTMY

Thomas Fuchs
@thomasfuchs

https://goo.gl/wScTMY

Thanks!
slides: goo.gl/sp9wRS

Scott Vandehey — @spaceninja — Devsigner 2016

http://goo.gl/sp9wRS

