
TypeScript type-guards � TypeScript type-guards �

#whoami#whoami

Charly POLY - Senior Software Engineer at

#whoami#whoami

Charly POLY - Senior Software Engineer at

- writing
 series on

TypeScript Essentials

https://medium.com/@wittydeveloper/typescript-essentials-b7ae85b0f561

PlanPlan

"Types are not real": static vs runtime

TypeScript embed type-guards

The Discriminated Unions

User-Defined type-guards

How to start?

"Types aren't real""Types aren't real"

"Types aren't real""Types aren't real"

Make "types" strongerMake "types" stronger

Make "types" strongerMake "types" stronger

"static vs runtime limit":

- any to a "defined type"

- "as" keyword

Typing "weak spots"Typing "weak spots"

const chat: Chat = await http.post(
 `/chats`,
 { id }
).then(
 response => response.body.chat as Chat
);

// ...

export const Form = reduxForm<any, any>(
 /* ... */
)

"Make types reals""Make types reals"

“ A type guard is some expression that
performs a runtime check that guarantees the

type in some scope.

TypeScript Handbook, "Advanced types"

https://www.typescriptlang.org/docs/handbook/advanced-types.html

TypeScript embed type-guardsTypeScript embed type-guards

typeof typeof type-guardstype-guards
function formatMoney(amount: string | number): string {
 let value = amount; // value type is number or string
 if (typeof amount === "string") {
 value = parseInt(amount, 10); // amount type is string
 }
 return value + " $"; // value type is number
}

// calling formatMoney({ myObject: 1} as any)
// will not call parseInt with an object

“ TypeScript and JavaScript runtime
are now tied to the same behaviour.

TypeScript embed type-guardsTypeScript embed type-guards

Embed Embed type-guards:type-guards:

typeof operator

instanceof operator

in operator

The Discriminated UnionsThe Discriminated Unions

The Discriminated UnionsThe Discriminated Unions

“ Discriminated Unions is a pattern that
allow to build types that shares a common

property but have different shapes

The Discriminated UnionsThe Discriminated Unions

“ Discriminated Unions is a pattern that
allow to build types that shares a common

property but have different shapes

TypeScript Handbook, "Advanced types"

1. Types that have a common, singleton
type property — the discriminant.

2. Then, a type alias that takes the union
of those types — the union.

3. Finally, a type guard on the common
property (on the discriminant).

interface Action {
 type: string; // the discriminant
}

interface ActionA extends Action {
 type: 'ActionA';
 mypropA: string;
}

interface ActionB extends Action {
 type: 'ActionB';
 mypropB: string;
}

type anyAction = ActionA | ActionB; // the union

Example with redux actions

https://www.typescriptlang.org/docs/handbook/advanced-types.html

The Discriminated UnionsThe Discriminated Unions
interface Action { type: string; }

interface ActionA extends Action {
 type: 'ActionA';
 mypropA: string;
}

interface ActionB extends Action {
 type: 'ActionB';
 mypropB: string;
}

type anyAction = ActionA | ActionB;

// ...

function reducer(state: State, action: anyAction): Action {
 switch(action.type) { // "ActionA" | "ActionB"
 case 'ActionA':
 return { ...state, prop: action.mypropB }; // TS ERROR!
 break;
 case 'ActionB':
 return { ...state, prop: action.mypropB }; // OK
 break;
 default:
 return state;
 }
}

The Discriminated UnionsThe Discriminated Unions

User-defined type-guardsUser-defined type-guards

“ “real world usage” of TypeScript is not restricted to
scalar types (string, boolean, number, etc…).
Real world applications mainly deals with complex
object or custom types.

This is when “User-Defined Type Guards” help us.

TypeScript — Make types “real”, the type guards

https://medium.com/@wittydeveloper/typescript-make-types-real-the-type-guard-functions-814364e8dbe3

User-defined type-guardsUser-defined type-guards

function isFish(pet: any): pet is Fish {
 return pet.swim !== undefined;
}

guard function argument type, like for
overloads, should be as open as possible.

a new is operator, called type predicate.

User-defined type-guardsUser-defined type-guards

User-defined type-guardsUser-defined type-guards

Good points of User-Defined type-guards:

matches real-world expectations
more flexible
support complex types

stateless and isolated ➡ testable

Where to start?Where to start?

Avoid "any" and "as" and use type-guards for complex use-cases

Where to start?Where to start?

Avoid "any" and "as" and use type-guards for complex use-cases

if (!!myobject.someProp) {
 (<MyType>myobject).someMethod()
}

➡ User-Defined type-guards

Where to start?Where to start?

Avoid "any" and "as" and use type-guards for complex use-cases

if (!!myobject.someProp) {
 (<MyType>myobject).someMethod()
}

➡ User-Defined type-guards

function reducer(state: State, action: any): Action {
 switch(action.type) { // "ActionA" | "ActionB"
 case 'ActionA':
 return { ...state, prop: <ActionA>action.mypropA };
 break;
 // ...
 default:
 return state;
 }
}

➡ Discriminated Unions

Where to start?Where to start?

Save time while building type-guards by using io-ts

Introduced in article by ,

io-ts is an active library that aim to solve the same problem:

“Typescript and validations at runtime boundaries” @lorefnon

“ TypeScript compatible runtime
type system for IO decoding/encoding

https://lorefnon.tech/2018/03/25/typescript-and-validations-at-runtime-boundaries/
http://twitter.com/lorefnon

Where to start?Where to start?
io-ts overview

const Person = t.interface({
 name: t.string,
 age: t.string
})

interface IPerson extends t.TypeOf<typeof Person> {}

// same as
// interface IPerson {
// name: string
// age: number
// }

let a: any = {};

if (Person.is(a)) {
 // a is a Person type
}

Powerful API:

- decode()
- encode()
- is()

and also,

- custom error reporters
- unions and recursives types support

ConclusionConclusion

Types can be real

Avoid "as" operator, use type-guards

TypeScript is more powerful than you think

Thanks for listening!Thanks for listening!

🔗

honest.engineering

@whereischarly

/wittydeveloper

For more, look at the "TypeScript — Make types “real”, the type guards" article

https://honest.engineering/
https://twitter.com/whereischarly
https://github.com/wittydeveloper
https://medium.com/@wittydeveloper/typescript-make-types-real-the-type-guard-functions-814364e8dbe3

