
High-performing engineering
teams and the Holy Grail

Jeremy Meiss

Director, DevRel & Community

So back to the tech industry....

Forrester 2021 Total Economic Empact study

Using best-in-class CI/CD platforms can provide:

$7.8 million saved from shorter software development cycles.
$4.3 million recuperated in lost developer productivity.
50% decrease in annual infrastructure spend.
$1.7 million estimated value of improved code quality.

ThroughputDuration Mean time

to recovery

Success
rate

CI/CD Benchmarks for
high-performing teams

So what does the
data say?

Duration
the foundation of software engineering velocity, measures the

average time in minutes required to move a unit of work
through your pipeline

So what is an ideal Duration?

<=10 minute builds

"a good rule of thumb is to keep your builds to no
more than ten minutes. Many developers who use CI

follow the practice of not moving on to the next task
until their most recent checkin integrates

successfully. Therefore, builds taking longer than
ten minutes can interrupt their flow."

-- Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk

Duration: What the data shows

Benchmark: 5-10mins

"Why so much lower than
the Duration benchmark?"

Improving test coverage
Add unit, integration, UI, and end-to-end testing across all app layers
Incorporate code coverage tools into pipelines to identify inadequate testing
Include static and dynamic security scans to catch vulnerabilities
Incorporate TDD practices by writing tests during design phase

Optimizing your pipelines
Use test splitting and parallelism to execute multiple tests simultaneously
Cache dependencies and other data to avoid rebuilding unchanged portions
Use Docker images custom made for CI environments
Choose the right machine size for your needs

Duration and the Platform Team

Identify and eliminate impediments to developer velocity
Set guardrails and enforce quality standards across projects
Standardize test suites and CI pipeline configs, i.e. shareable config
templates and policies
Welcome failed pipelines, i.e. fast failure
Actively monitor, streamline, and parallelize pipelines across the org

Mean time to Recovery
the average time required to go from a failed build

signal to a successful pipeline run

Mean time to recovery is
indicative of resilience

"A key part of doing a continuous build is that if
the mainline build fails, it needs to be fixed right
away. The whole point of working with CI is that
you're always developing on a known stable base."

-- Fowler, Martin. "Continuous Integration." Web blog post. . 1 May 2006. Web.MartinFowler.com

https://martinfowler.com/articles/continuousIntegration.html#:~:text=and%20remove%20them.-,Fix%20Broken%20Builds%20Immediately,CI%20is%20that%20you%27re%20always%20developing%20on%20a%20known%20stable%20base,-.%20It%27s%20not%20a

So what MTTR is ideal?

<=60min MTTR on
default branches

MTTR: What the data shows

Benchmark: 60mins

"10 minutes is a striking
improvement - what happened?"

Two factors impacting reduced MTTR
Economic pressures in the macro environment + rising competition in the
micro environment, forcing teams to prioritize product stability and reliability
over growth
High performers increasingly rely on platform teams to achieve steadier and
more resilient development pipelines with built-in recovery mechanisms.

Treat your default branch as the
lifeblood of your project

Getting to faster recovery times
Set up instant alerts for failed builds using services like Slack, Twilio, or
Pagerduty.
Write clear, informative error messages for your tests that allow you to
quickly diagnose the problem and focus your efforts in the right place.
SSH into the failed build machine to debug in the remote test environment.
Doing so gives you access to valuable troubleshooting resources, including
log files, running processes, and directory paths.

MTTR and the Platform Team

Ephasise the value of deploy-ready, default branches, with clear
processes & expectations for failure recovery across all projects
Set up effective monitoring and alerting systems, and track
recovery time
Limit frequency and severity of broken builds with role-based
AC and config policies
Config- and Infrastructure-as-Code tools limit potential for
misconfig errors
Actively monitor, streamline, and parallelize pipelines across the
org

Success Rate
number of passing runs divided by the total

number of runs over a period of time

So what Success rate is ideal?

90%+ Success rate on
default branches

Success rate: What the data
shows

Benchmark: 90%+ on default

Success rate and the Platform Team
With low success rates, look at your MTTR and shorten
recovery time first
Set a baseline success rate, then aim for continuous
improvement, looking for flaky tests or gaps in test coverage
Be mindful of patterns and influence of external factors, i.e.
decline on Fridays, holidays, etc.

Throughput
average number of workflow runs that an organization

completes on a given project per day

So what Throughput is ideal?

It depends.

Throughput: What the data
shows

Benchmark: at the speed of your business

Throughput and the Platform Team
Map goals to reality of internal and external business situations,
i.e. customer expectations, competitive landscape, codebase
complexity, etc.
Capture a baseline, monitor for deviations
Alleviate as much developer cognitive load from day-to-day work

High-Performing Teams in 2023

"Surely <insert programming language>
helps me achieve the "Holy Grail"!?"

Thank

You.

For feedback and swag: circle.ci/jeremy

timeline.jerdog.me

IAmJerdog

jerdog

/in/jeremymeiss

@jerdog@hachyderm.io

http://circle.ci/jeremy

