
Search
a new era
David Pilato | @dadoonet

Elasticsearch
You Know, for Search

These are not the droids
you are looking for.

GET /_analyze

{

 "char_filter": ["html_strip"],

 "tokenizer": "standard",

 "filter": ["lowercase", "stop", "snowball"],

 "text": "These are not the droids
 you are looking for."

}

These are not the droids you are
looking for.

These are not the droids you are
looking for.

"char_filter": "html_strip"

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

"tokenizer": "standard"

These
are
not
the
droids
you
are
looking
for

"filter": "lowercase"

these
are
not
the
droids
you
are
looking
for

These
are
not
the
droids
you
are
looking
for

"filter": "stop"

droids
you

looking

"filter": "snowball"

droids
you
looking

droid
you
look

These are not the droids you are looking for.

{ "tokens": [{

 "token": "droid",

 "start_offset": 27, "end_offset": 33,

 "type": "<ALPHANUM>", "position": 4

 },{

 "token": "you",

 "start_offset": 34, "end_offset": 37,

 "type": "<ALPHANUM>", "position": 5

 }, {

 "token": "look",

 "start_offset": 42, "end_offset": 49,

 "type": "<ALPHANUM>", "position": 7

 }]}

Semantic
search

≠
Literal

matches

Elasticsearch
You Know, for Vector Search

What is a
 Vector ?

Embeddings represent your data
Example: 1-dimensional vector

CartoonRealistic

Character Vector

[1 

 1 

Multiple dimensions
represent different data aspects

Human

Machine

CartoonRealistic

Character Vector

[1, 1 

 1, 0 

Character Vector

[1.0, 1.0 

 1.0, 0.0 

[1.0, 0.8 

 1.0, 1.0 

[1.0, 1.0 

Similar data
is grouped together

CartoonRealistic

Human

Machine

Vector search ranks objects
by similarity (~relevance) to the query

CartoonRealistic

Rank Result

Query

1

2

3

4

5

Human

Machine

How do you
index vectors ?

Architecture of Vector Search

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text"
 }
 "desc_embedding": {
 "type": "dense_vector"
 }
 }
 }
}

dense_vector field type

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…],
 "img_embedding":[0.012,0.0,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton"
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

Source data

POST ecommerce/_doc

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

With Elastic ML

POST /ecommerce/_doc

Source data

Commercial

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 }

Eland Imports PyTorch Models

$ eland_import_hub_model
--url https://cluster_URL --hub-
model-id BERT-MiniLM-L6 --task-
type text_embedding --start

BERT-MiniLM-L6

Select the
appropriate model

Load it Manage models

Commercial

Elastic’s range of supported NLP models
● Fill mask model

Mask some of the words in a sentence and predict words
that replace masks

● Named entity recognition model
NLP method that extracts information from text

● Text embedding model
Represent individual words as numerical vectors in a predefined
vector space

● Text classification model
Assign a set of predefined categories to open-ended text

● Question answering model
Model that can answer questions given some or no context

● Zero-shot text classification model
Model trained on a set of labeled examples, that is able to classify previously unseen examples

Full list at: ela.st/nlp-supported-models

Commercial

https://ela.st/nlp-supported-models

How do you
search vectors ?

Architecture of Vector Search

GET ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...]

 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query

GET ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector_builder": {
 "text_embedding": {
 "model_text": "summer clothes",
 "model_id": <text-embedding-model>
 }
 }
 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query (with Elastic ML

Transformer model

Commercial

semantic_text field type
new in 8.15

POST ecommerce/_doc
{
 "description": "Our best-selling…"
}

GET ecommerce/_search
{
 "query": {
 "semantic": {
 "field": "desc_embedding"
 "query" : "I'm looking for a red dress for a DJ party"
}}}

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "copy_to": ["desc_embedding"]
 }
 "desc_embedding": {
 "type": "semantic_text",
 "inference_id": "e5-small-multilingual"
 }
 }
 }
}

PUT /_inference/text_embedding/e5-small-multilingual
{
 "service": "elasticsearch",
 "service_settings": {
 "num_allocations": 1,
 "num_threads": 1,
 "model_id": ".multilingual-e5-small_linux-x86_64"
 }
}

Architecture of Vector Search

Choice of Embedding Model

Extend to Higher Relevance

●Apply hybrid scoring
●Bring Your Own Model:

requires expertise + labeled
data

Start with Off-the Shelf
Models

●Text data: Hugging Face
(like Microsoft's E5

●Images: OpenAI’s CLIP

Problem
training vs actual use-case

But how does it
really work?

q

Similarity

Human

Realistic

θ

d1

d2

cos(θ) = ⃗q × ⃗d
| ⃗q | × | ⃗d |

_score = 1 + cos(θ)
2

Similarity: cosine (cosine)

_score = 1 + 1
2 = 1 _score = 1 + 0

2 = 0.5 _score = 1 − 1
2 = 0

θ θ θ

Similar vectors
θ close to 0

cos(θ) close to 1

Orthogonal vectors
θ close to 90°

cos(θ) close to 0

Opposite vectors
θ close to 180°

cos(θ) close to -1

⃗q × ⃗d = | ⃗q | × cos(θ) × | ⃗d |

Similarity: Dot Product (dot_product or
max_inner_product)

scorefloat = 1 + dot product(q, d)
2

scorebyte = 0.5 + dot product(q, d)
32768 × dims

q

θd

| ⃗q | × cos(θ)

l2_normq,d =
n

∑
i=1

(xi − yi)2

Similarity: Euclidean distance (l2_norm)

_score = 1
1 + (l2_normq,d)2

q

d

y

xx1 x2

y1

y2

n

∑i=1
(x i−

y i)
2

Brute Force

Hierarchical Navigable Small Worlds (HNSW
One popular approach

HNSW: a layered approach that
simplifies access to the nearest neighbor

Tiered: from coarse to fine
approximation over a few steps

Balance: Bartering a little accuracy for a
lot of scalability

Speed: Excellent query latency on large
scale indices

Scaling Vector Search

Best practices

1. Avoid searches during indexing

2. Exclude vectors from _source

3. Reduce vector dimensionality

4. Use byte rather than float

Vector search

1. Needs lots of memory

2. Indexing is slower

3. Merging is slow

* Continuous improvements in Lucene +
Elasticsearch

Reduce Required Memory

2. Reduce of number of dimensions per vector

1. Vector element size reduction (“quantize”)

Benchmarketing

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/

Elasticsearch
You Know, for Hybrid Search

Hybrid scoring

Term-based
score

Vector similarity
score

CombineLinear Combination
manual boosting

GET ecommerce/_search
{
 "query" : {
 "bool" : {
 "must" : [{
 "match": {
 "description": {
 "query": "summer clothes",
 "boost": 0.1
 }
 }
 },{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...],
 "boost": 2.0,
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 }],
 "filter" : {
 "range" : { "price": { "lte": 30 } }
 }
 }
 }
}

summer clothes

pre-filter

post-filter

PUT starwars
{
 "mappings": {
 "properties": {
 "text.tokens": {
 "type": "sparse_vector"
 }
 }
 }
}

GET starwars/_search
{
 "query":{
 "sparse_vector": {
 "field": "text.tokens",
 "query_vector": { "lucas": 0.50047517,
 "ship": 0.29860738,
 "dragon": 0.5300422,
 "quest": 0.5974301, ... }
 }
 }
}

"These are not the droids you are looking for.",

"Obi-Wan never told you what happened to your father."

ELSER
Elastic Learned Sparse EncodER

sparse_vector
Not BM25 or (dense) vector

Sparse vector like BM25

Stored as inverted index

Commercial

Hybrid ranking

Term-based
score

Dense vector
score

Combine

Sparse vector
score

Reciprocal Rank Fusion (RRF
blend multiple

ranking methods

Reciprocal Rank Fusion (RRF

Dense Vector

Doc Score r(d) k+r(d)

A 1 1 61

B 0.7 2 62

C 0.5 3 63

D 0.2 4 64

E 0.01 5 65

Doc RRF Score

A 1/61  1/62  0,0325

C 1/63  1/61  0,0323

B 1/62  0,0161

F 1/63  0,0159

D 1/64  0,0156

BM25

Doc Score r(d) k+r(d)

C 1,341 1 61

A 739 2 62

F 732 3 63

G 192 4 64

H 183 5 65

D  set of docs
R  set of rankings as permutation on 1..|D|
k - typically set to 60 by default

BM25f

Sparse Vector

Dense Vector

Hybrid Ranking

+

+

GET index/_search
{
 "retriever": {
 "rrf": {
 "retrievers": [{
 "standard" { "query": {
 "match": {...}
 }
 }
 },{
 "standard" { "query": {
 "sparse_vector": {...}
 }
 }
 },{
 "knn": { ... }
 }
]
 }
 }
}

Commercial

ChatGPT
Elastic and LLM

Search engines

Gen AI

LLM opportunities and limits

one
answer

GAI / LLM

your question

public internet data

your question

Retrieval Augmented Generation

the
right

answer

GAI / LLM

your question

+

public internet datayour business data

your question

context window

documents images audio

Demo
Elastic Playground

Elasticsearch
You Know, for Semantic Search

Search
a new era
David Pilato | @dadoonet

