
Scaling Down While Scaling Up

Design Choices That Increase Efficiency & Performance

Scaling Innovation Through Collaboration

24-25 APRIL 2024 LISBON, PORTUGAL

EMEA DEPLOYMENTS

PLATINUM

Scaling Down While Scaling Up – Design Choices That Increase Efficiency & Performance

Erik Riedel, PhD, Chief Engineering Officer Flax Computing

Hesham Ghoneim, PhD, Strategic Product Development Sims Lifecycle Services

24-25 APRIL 2024 LISBON, PORTUGAL

Abstract

This talk presents a detailed design study of several OCP hyperscale systems vs previous server & rack designs, including trade-offs & choices that reduce complexity, reduce costs, increase performance, and increase scalability. We will also quantify that a clear side-effect of these choices is to reduce the carbon footprint of data center deployments & operations. These carbon savings arise from both operational & scope 3 benefits, and they continue to accrue the longer systems are productively utilized. The power of collaborative, "out of the box" design approaches that have crossed traditional industry silos – across hardware, software, & operations – have enabled innovative designs that have proven their value and influence across the industry. The fact that these designs were pursued with simplicity and efficiency in mind mean that they also inherently consume less resources in both energy, materials, and operational effort paying dividends in the short-run and long-run.

24-25 APRIL 2024 LISBON, PORTUGAL

Expected Learnings

Talk attendees will learn about the details of several OCP server, storage & GPU designs that rethink the traditional data center server to provide clear benefits in reduced complexity, reduced costs, increased performance, & increased efficiency at scale. By reviewing a small subset of open hardware designs from the 10 year history of the Open Compute Project, we will outline the clear engineering trade-offs that were made, and the resulting gains in efficiency & scalable deployment. Attendees will also learn how these optimizations have direct benefits to the reduction of carbon footprints – both energy & materials consumption – when combined with modern data center infrastructure, deployment, & software architectures. The combination of creative hardware designs, software architectures, & operational approaches developed in wide industry collaborations with traditionally siloed teams and companies operating together have made these individual evolutions into a true revolution.

24-25 APRIL 2024 LISBON, PORTUGAL

Social 280

Scaling Down While Scaling Up – learn about OCP designs that reduce complexity, costs & carbon footprints, while increasing performance & efficiency. By innovating across industry silos, these collaborations have made a series of design evolutions into a true revolution.

24-25 APRIL 2024 ILISBON, PORTUGAL

Outline

- Intro carbon footprint of computing
- Design Footprints compare OCP to traditional server designs
- Materials Footprints material + carbon impacts
- Materials Reuse / Recycle extend life, reduce carbon impacts
- Server Density can we improve further
- Workload / Carbon example: memory density
- Conclusions + Call To Action

LISBON PORTUGAI

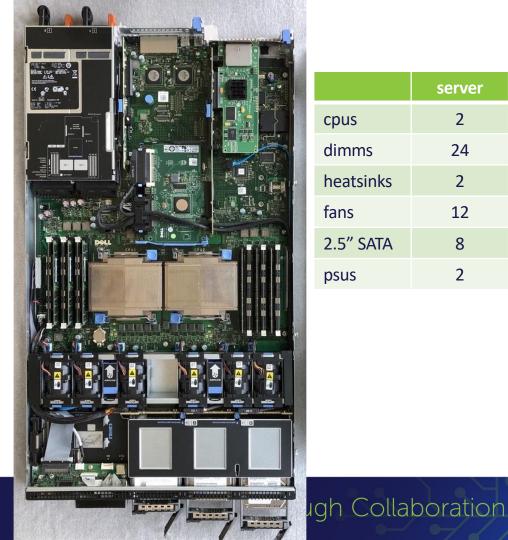
design footprints

24-25 APRIL 2024 LISBON, PORTUGAL

2 servers / 2U

- dual CPUs
- 24x memory sockets
- two 1U heatsinks
- twelve 1U fans
- eight SATA drives 2.5"
- two PSUs

(PowerEdge R630)


(OCP Leopard

- 3 servers / 2 OU - dual CPUs
- 16x memory sockets
- two 2U heatsinks
- two 2U fans
- six NVMe drives M.2
- shared PSUs

Dell R630

- 2 servers / 2U
 - dual CPUs
 - 24x memory sockets
 - two 1U heatsinks
 - twelve 1U fans
 - eight SATA drives 2.5"
 - two PSUs
- 40 servers / rack

	server	rack
010110		
cpus	2	80
dimms	24	960
heatsinks	2	80
fans	12	480
2.5" SATA	8	640
psus	2	80

24-25 APRIL 2024 LISBON, PORTUGAL

OCP Leopard/v2

- 3 servers / 20U
 - dual CPUs
 - 16x memory sockets
 - two 2U heatsinks
 - two 2U fans
 - six NVMe drives M.2
 - shared PSUs
- 48 servers / rack

Scaling

	server	rack
cpus	2	96
dimms	16	768
heatsinks	2	96
fans	2	96
M.2 NVMe	6	288
psus		6

Through Collaboration

24-25 APRIL 2024 LISBON, PORTUGAL

materials footprints

24-25 APRIL 2024 LISBON, PORTUGAL

	server	weight (g)	rack	total (kg)	
cpus	2	54	80	4.3	
dimms	24	10	960	9.6	
heatsinks	2	165	80	13.2	
motherboard	1	875	40	35.0	
fans	12	20	480	9.6	
2.5" SATA	8	90	320	28.8	
2.5" drive caddy	8	54	320	17.3	
NIC 4x 10G	1	320	40	12.8	
PCI riser (NIC)	1	90	40	3.6	
PCI riser (unused)	1	130	40	5.2	
psus	2	565	80	45.2	
chassis	1	17.6 kg	40	704.0	
pdu		35 kg	1	35.0	
power cables	2	120	80	9.6	TOTAL
rack		145 kg	1	145.0	1078 kg

	server	weight	rack	total	
cpus	2	54	96	5.2	
dimms	16	10	768	7.7	
heatsinks	2	185	96	17.8	
motherboard	1	325	48	15.6	
fans	2	30	96	2.9	
M.2 NVMe	6	75	288	21.6	
AVA board	2	307	96	29.5	
NIC 2x 25G mezz	1	154	48	7.4	
PCI riser (x16 + x8)	1	92	48	4.4	
		0	48	0.0	
psus		5.5 kg	6	33.0	
chassis	1	7.5 kg	48	360.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	720 kg

	server	weight (g)	rack	total (kg)	
cpus	2	54	80	4.3	1,120
dimms	24	10	960	9.6	cores
heatsinks	2	165	80	13.2	
motherboard	1	875	40	35.0	
fans	12	20	480	9.6	
2.5" SATA	8	90	320	28.8	just
2.5" drive caddy	8	54	320	17.3	over 1
NIC 4x 10G	1	320	40	12.8	core
PCI riser (NIC)	1	90	40	3.6	per kg
PCI riser (unused)	1	130	40	5.2	
psus	2	565	80	45.2	
chassis	1	17.6 kg	40	704.0	
pdu		35 kg	1	35.0	
power cables	2	120	80	9.6	TOTAL
rack		145 kg	1	145.0	1078 kg

	server	weight (g)	rack	total (kg)	
cpus	2	54	80	4.3	0.4%
dimms	24	10	960	9.6	0.9%
heatsinks	2	165	80	13.2	only 1.3% of
motherboard	1	875	40	35.0	rack is the
fans	12	20	480	9.6	"computing" elements
2.5" SATA	8	90	320	28.8	
2.5" drive caddy	8	54	320	17.3	
NIC 4x 10G	1	320	40	12.8	
PCI riser (NIC)	1	90	40	3.6	
PCI riser (unused)	1	130	40	5.2	
psus	2	565	80	45.2	
chassis	1	17.6 kg	40	704.0	
pdu		35 kg	1	35.0	
power cables	2	120	80	9.6	TOTAL
rack		145 kg	1	145.0	1078 kg

	server	weight	rack	total	
cpus	2	54	96	5.2	1,344
dimms	16	10	768	7.7	cores
heatsinks	2	185	96	17.8	
motherboard	1	325	48	15.6	
fans	2	30	96	2.9	
M.2 NVMe	6	75	288	21.6	almost
AVA board	2	307	96	29.5	2 cores
NIC 2x 25G mezz	1	154	48	7.4	per kg
PCI riser (x16 + x8)	1	92	48	4.4	
		0	48	0.0	
psus		5.5 kg	6	33.0	
chassis	1	7.5 kg	48	360.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	720 kg

	server	weight	rack	total	
cpus	2	54	96	5.2	0.7%
dimms	16	10	768	7.7	1.1%
heatsinks	2	185	96	17.8	only 1.8% of
motherboard	1	325	48	15.6	rack is the
fans	2	30	96	2.9	"computing" elements
M.2 NVMe	6	75	288	21.6	
AVA board	2	307	96	29.5	
NIC 2x 25G mezz	1	154	48	7.4	
PCI riser (x16 + x8)	1	92	48	4.4	
		0	48	0.0	
psus		5.5 kg	6	33.0	
chassis	1	7.5 kg	48	360.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	720 kg

	server	weight	rack	total	
cpus	2	54	96	5.2	0.7%
dimms	16	10	768	7.7	1.1%
heatsinks	2	185	96	17.8	only 1.8% of
motherboard	1	325	48	15.6	rack is the "computing"
fans	2	30	96	2.9	elements
M.2 NVMe	6	75	288	21.6	3.0%
AVA board	2	307	96	29.5	to 4.8% with
NIC 2x 25G mezz	1	154	48	7.4	storage elements
PCI riser (x16 + x8)	1	92	48	4.4	included
		0	48	0.0	
psus		5.5 kg	6	33.0	
chassis	1	7.5 kg	48	360.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	720 kg

Example – Fans

• twelve 1U fans

• two 2U fans

24-25 APRIL 2024 LISBON, PORTUGAL

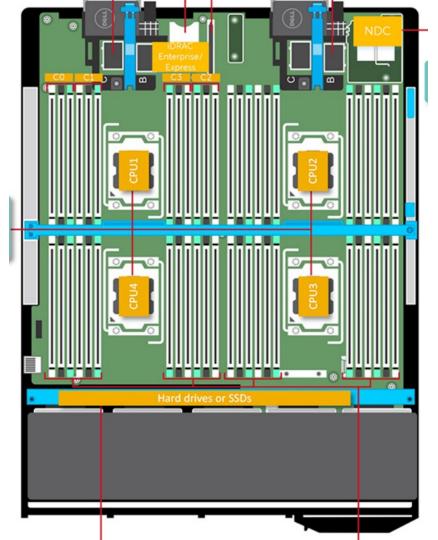
Example – Fans

• twelve 1U fans

24 / 2U

• two 2U fans

6 / 2OU


24-25 APRIL 2024 LISBON, PORTUGAL

...but wait, there's more...

(even denser server options)

24-25 APRIL 2024 LISBON, PORTUGAL

2 servers / 2U

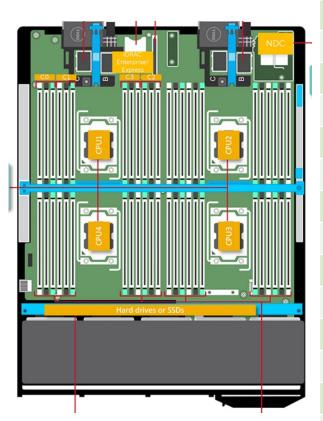
- quad CPUs
- 48x memory sockets
- four 1U heatsinks
- twenty 1U fans
- eight SAS/SATA drives 2.5"

- two PSUs

PowerEdge FC830)

(OCP Leopard

8 sockets,


96 dimms

- 3 servers / 2 OU
- dual CPUs
- 16x memory sockets
- two 2U heatsinks
- two 2U fans
- six NVMe drives M.2

- shared PSUs

6 sockets, 48 dimms

24-25 APRIL 2024 LISBON, PORTUGAL

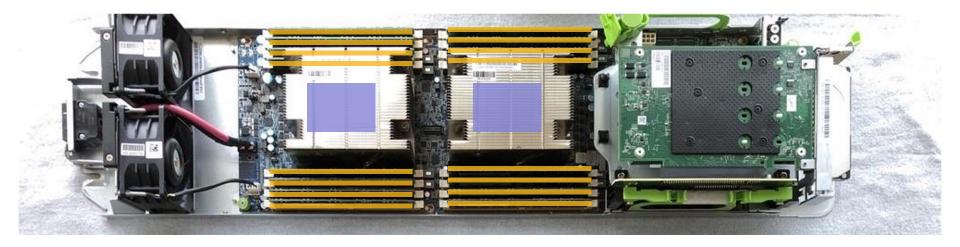
OCP REGIONAL SUMMIT

	server	weight (g)	rack	total (kg)	
cpus	4	54	160	8.6	3,520
dimms	48	10	1920	19.2	cores
heatsinks	4	165	160	26.4	
motherboard	1	875	40	35.0	
fans	12	20	480	9.6	
2.5" SATA	8	90	320	28.8	over 3
2.5" drive caddy	8	54	320	17.3	cores
NIC 4x 10G	1	185	40	7.4	per kg
PCI riser (NIC)	1	65	40	2.6	
PCI riser (unused)	3	65	120	7.8	
psus	1	565	40	22.6	
chassis	1	18.4 kg	40	736.0	
pdu		35 kg	1	35.0	
power cables	1	120	40	4.8	TOTAL
rack		145 kg	1	145.0	1106 kg

materials reuse

24-25 APRIL 2024 LISBON, PORTUGAL

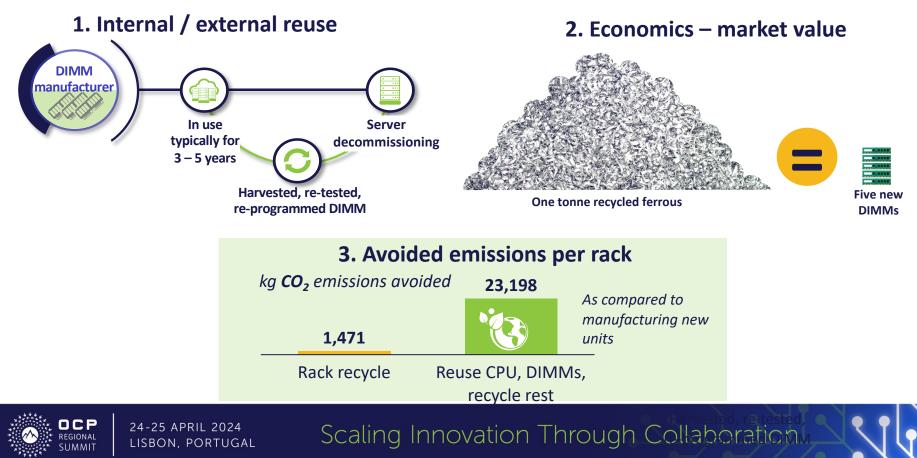
	server	weight	rack	total	
cpus	2	54	96	5.2	
dimms	16	10	768	7.7	
heatsinks	2	185	96	17.8	
motherboard	1	325	48	15.6	
fans	2	30	96	2.9	
M.2 NVMe	6	75	288	21.6	
AVA board	2	307	96	29.5	
NIC 2x 25G mezz	1	154	48	7.4	
PCI riser (x16 + x8)	1	92	48	4.4	
psus		5.5 kg	6	33.0	
chassis	1	7.5 kg	48	360.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	720 kg


24-25 APRIL 2024 LISBON, PORTUGAL

(MEMORY COMPONENTS)

24-25 APRIL 2024 LISBON, PORTUGAL

	server	weight	rack	total		
cpus	2	54	96	5.2	1,344 cores	-
dimms	16	10	768	7.7	12 TB mem	-


socketed cpu – fits any LGA2011 Haswell/Broadwell server or workstation socket

memory modules fit any DDR4 server ECC socket

24-25 APRIL 2024 LISBON, PORTUGAL

So why does it matter?

Automation is key for reuse of components

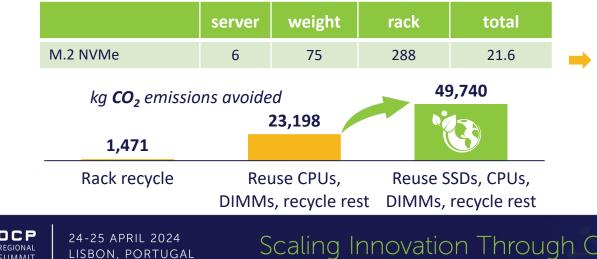
Automated dismantling / removal from rack

Automation is key for reuse of components

Automate DIMM removal, code scanning and boxing

Automation is key for reuse of components

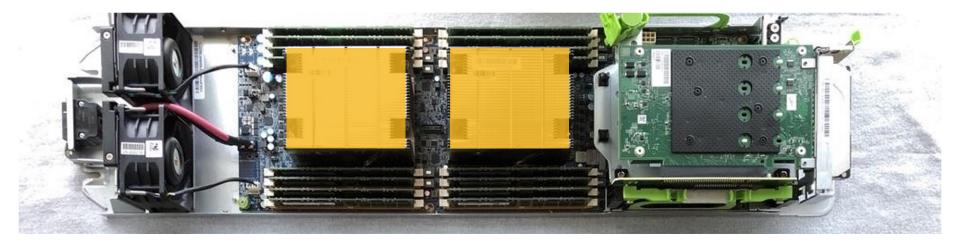
Automated heat sink and CPU removal



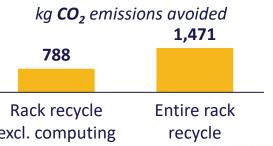
(STORAGE COMPONENTS)

24-25 APRIL 2024 LISBON, PORTUGAL

flash drives fit any m.2/nvme server, workstation, or desktop


but...usually need to be shredded.

(METAL COMPONENTS)



24-25 APRIL 2024 LISBON, PORTUGAL

	server	weight	rack	total	📥 metal ex
heatsinks	2	185	96	17.8	
chassis	1	7.5 kg	48	360.0	kg C
busbar		15 kg	1	15.0	788
rack		175 kg	1	175.0	
					Rack ree excl. com


24-25 APRIL 2024 <u>LISB</u>ON, PORTUGAL

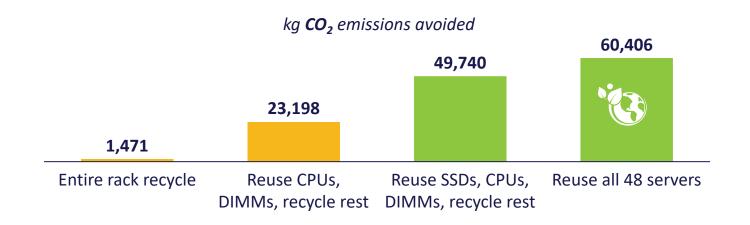
RECYCLE REUSE

(SYSTEMS COMPONENTS)

24-25 APRIL 2024 LISBON, PORTUGAL

	server	weight	rack	total	
motherboard	1	325	48	15.6	
fans	2	30	96	2.9	
AVA board	2	307	96	29.5	
NIC 2x 25G mezz	1	154	48	7.4	
PCI riser (x16 + x8)	1	92	48	4.4	

difficult materials extraction


extract precious metals such as Au, Ag, Pd, and Cu from PCBs

24-25 APRIL 2024 LISBON, PORTUGAL

...can we do better ?

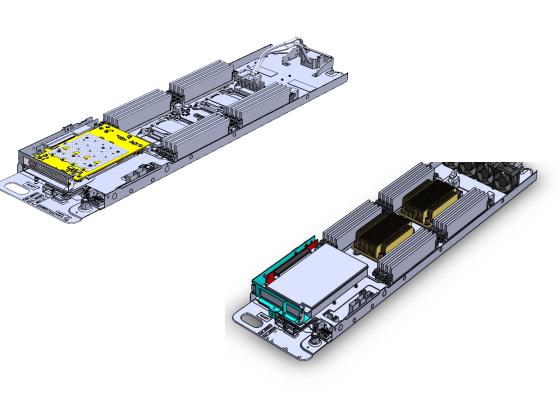
(more reuse, repurpose, redeploy)

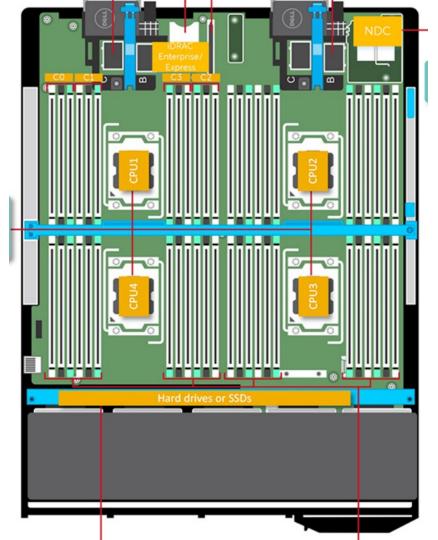
24-25 APRIL 2024 LISBON, PORTUGAL

...additional details...

(higher density design optimization)

24-25 APRIL 2024 LISBON, PORTUGAL


10U Tioga Pass


- OCP Tioga Pass
- in 1 OU form factor
- low-profile heat sinks
- low-profile 4x NVMe M.2
- dual SkyLake-SP, CascadeLake-SP

OCTOBER 17-19, 2023

SAN JOSE, CA

- 768GB memory (12x 64GB)
- 15 TB NVMe (4x 3.84TB)
- dual 25G net + host mgmt
- optional dual 100G net

2 servers / 2U

- quad CPUs
- 48x memory sockets
- four 1U heatsinks
- twenty 1U fans
- eight SAS/SATA drives 2.5"

- two PSUs

PowerEdge FC830)

(OCP Tioga Pass

8 sockets,

96 dimms

- 3 servers / 1 OU
- dual CPUs
- 12x memory sockets
- two 2U heatsinks
- two 2U fans
- eight NVMe drives M.2
- shared PSUs

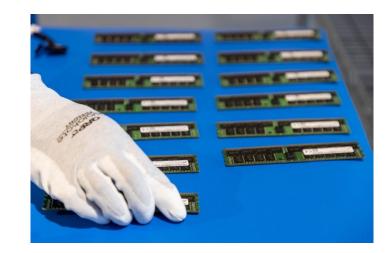
12 sockets, 72 dimms

and the second s	
	Charles and a second second

	server	weight	rack	total	
cpus	2	54	192	10.4	3,840
dimms	16	10	1536	15.4	cores
heatsinks	2	185	192	35.5	
motherboard	1	325	96	31.2	
fans	2	30	192	5.8	
M.2 NVMe	6	75	576	43.2	over 3
AVA board	2	307	192	58.9	cores
NIC 2x 25G mezz	1	154	96	14.8	per kg
PCI riser (x16 + x8)	1	92	96	8.8	
		0	48	0.0	
psus		5.5 kg	10	55.0	
chassis	1	75 kg	96	720.0	
power shelf		25 kg	1	25.0	
busbar		15 kg	1	15.0	TOTAL
rack		175 kg	1	175.0	1215 kg

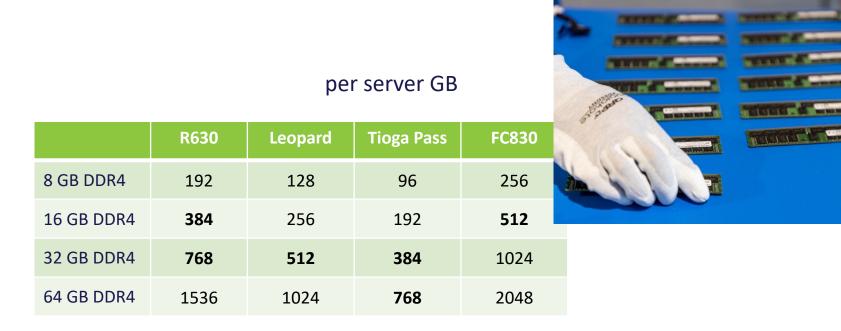
24-25 APRIL 2024 LISBON, PORTUGAL

workload / carbon



24-25 APRIL 2024 LISBON, PORTUGAL

Example – DIMMs


- Dell R630
 - 24x DDR4 modules, 2x cpu Broadwell
- OCP Leopard/v2
 - 16x DDR4 modules, 2x cpu Broadwell
- OCP Tioga Pass
 - 12x DDR4 modules , 2x cpu SkyLake
- Dell FC830
 - 32x DDR modules , 4x cpu Broadwell

24-25 APRIL 2024 LISBON, PORTUGAL

Examples – DIMMs by Size

24-25 APRIL 2024 LISBON, PORTUGAL

Examples – DIMMs by Size

24-25 APRIL 2024 LISBON, PORTUGAL

See It For Yourself

Different Control of the Name of Street Street Street

nas nasanasatas

OCP Experience Center - Nautilus (Stockton, CA) - hosted by Flax Computing The Sustainable Server Lab (SSL) center for open hardware i...

Solution Provider: Flax Computing Model #: OCP Experience Center - Nautilus (Stockton, CA)

Computing

OCP Experience Center - MGHPCC (Holyoke, MA) - hosted by Flax Computing

OCP Experience Center - MGHPCC (Holyoke, MA) - hosted by Flax Computing The Sustainable Server Lab (SSL) center for open hardware i...

Solution Provider: Flax Computing Model #: OCP Experience Center - MGHPCC (Holyoke, MA)

OCTOBER 17-19, 2023

SAN JOSE, CA

Efficient Computing and Energy Reduction Test Center - Hosted by Flax Computing

The Recertification for Efficient Computing and Energy Reduction Test (RECERT) design and manufacturing center hosts a range of activities related to advancing ...

Solution Provider: Flax Computing Model #: N/A

Carbon Footprint Analysis and Reduction (CFAR) Center - Hosted by Flax Computing

The Carbon Footprint Analysis and Reduction (CFAR) analysis and design process allows everyone to succinctly and accurately measure the carbon footprint of thei...

Solution Provider: Flax Computing Model #: Carbon Footprint Analysis and Reduction Center

OCTOBER 17-19, 2023 SAN JOSE, CA

Call to Action

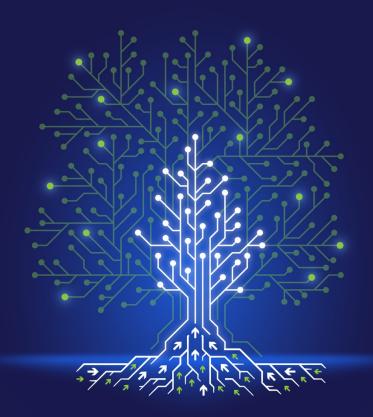
- Reach out to us to get involved
- Engage us to evaluate / quantify your server carbon footprints
 - www.flaxcomputing.com
 - <u>www.simslifecycle.com</u>
- Evaluate your own servers, share the results with us report @ flaxcomputing.com
- Contribute measurements and component details (reuse stories, workload information, etc.) and share what components you would be most interested in

data @ flaxcomputing.com

sls.sustainability@simsmm.com

SAN JOSE, CA

OCTOBER 17-19, 2023



Thank you!

Scaling Innovation Through Collaboration

24-25 APRIL 2024 LISBON, PORTUGAL

