
UP TO DATE
MAINTAINING AND IMPROVING

SHOPIFY THEMES

!2

Long live your code.
Be proactive instead of reactive.

!3

Past, present and future.
Meet your codebase ghosts…

THE PAST

!5

Technical debt is
unavoidable.
Does your team pay off their credit card every month?

It’s all around us...

● Using third-party libraries that are now defunct

● Custom undocumented code added to a theme
by an expert

● Themes that haven’t been updated in years

● Inherited code from other agencies/developers

● A “temporary” fix that was added months ago

!7

Legacy code is everywhere.
How much are you living with?

Reaching the tipping point.
● Developers are scared to change anything

● Worried about the “Butterfly Effect”

● No one want to work on that store anymore

● Theme can’t be updated - bugs emerge

● App conflicts (with other apps and themes)

!9

I see dead parentheses.
Identifying your issues.

Take stock of what you’ve got.
● Is it currently broken? Like really broken?

● When is the last time the code was touched?

● Does anyone understand what the code does?

● Are you using the latest Shopify features?

● What kind of improvements can be made?

!11

Be kind.
Attitude is everything.

Focus on solutions, not blame.
● You don’t know what stresses previous developers

were under/ time commitments, etc

● Software is built by humans and humans are NOT
infallible

● Flip side is to not put code on a pedestal

!13

Why does it happen?
Identifying the path to technical debt.

– Martin Fowler

Deliberate

Inadvertent

Reckless

No one has time to
review it, so we’ll just
commit to master.

What are JavaScript
design patterns?

Prudent

We know this bug
exists, but we have to
focus on this feature
instead.

In hindsight, it’s clear
that we should have
taken this approach
instead.

THE PRESENT

!16

Getting buy-in.
Is it worth the trouble to update or improve?

What’s the return on investment here?

● Merchants may not recognize the importance of
maintenance

● Avoid enabling the “Set it and forget it” attitude

● Sell them on the flexibility of new features and
performance improvements

● Stress the importance of keeping things up to date
(browsers update all the time)

!18

Help your team.
Reduce technical debt where you can.

Document the heck out of everything.

● Documentation needs to be just good enough

● Document all the things - project with compilers,
development process, etc

● Use comments in your code - eg. using liquid to
create arrays

● Not fun, but super helpful when someone new
joins the team

Tooling.

● Linters, compilers, task runners

● Be wary because these can come with their own
technical debt, but the pros generally outweigh
the cons

● Linters can be tough with liquid - separate files

Code styleguides.

● If you can’t implement a linter, this is the next best
thing in the short term

● Be picky in pull requests (but nice!)

● Have one for CSS/JavaScript/HTML/Liquid, etc

Establish some standards.

● Introduce some repetition and consistency in your
code so that it is easier to ramp up

● BEM, SMACSS, OOCSS

● Explore design systems (eg. Polaris or custom)

Know what has changed.

● Always use some form of version control

● Make pull requests small and associate branch
with issue number

● Take your time with reviews and set aside time/
energy

● Establish a solid git branching model (eg. git-flow)

Keep your merchants in the loop.

● Changelogs are easier for team to review than
commit messages - also a marketing opportunity

● Let your clients know when updates have been
made - stress importance of updating

● Listen to suggestions for features/improvements

Happy devs, happy life.

● Nothing is too precious to be reworked and
improved - encourage time to refactor

● Provide opportunities to work on new features

● Get team to take personal ownership of code that
they are committing

● Don’t get too fancy, just solid readable code

!26

Incremental changes.
Small wins over time.

Things you can do tomorrow.

● Remove any old polyfills that you no longer need
(check out caniuse.com for browser support)

● Use resource hints (preconnect, dns-prefetch) to
perform DNS lookups in the background

● Minify your HTML using liquid

● Run axe on your site to check for accessibility
issues and make a plan to update

http://caniuse.com

THE FUTURE

!29

Look ahead.
Think about what your merchants are requesting.

Be kind to your future self.
● Be ready to support new features down the line

● Not all “features” are optional (eg. a11y)

● Browsers change rapidly and new APIs appear
that you will want to use

● There is no “set it and forget it”

!31

Keeping things fresh.
What should you be aware of?

!32

Font picker.
(maybe not for custom agency sites)

!33

Dynamic Payment Buttons.
SUPER popular.

!34

Sections and blocks.
Just scratching the surface  
of how powerful these can be.

!35

Accessibility.
Mandatory updates.

!36

Internationalization.
All around the world.

!37

Stay up to date.
Bringing it all together.

No code left behind.

● If you are using a third-party theme, always aim to
keep it up to date

● Sign up for mailing lists/ read development blogs

● Get involved with the Shopify community

● Attend conferences (good job!)

● Build time for maintenance into your schedule

Maintenance is often overlooked
● It’s not hip, cool or sexy

● BUT being able to properly understand (and
respect) legacy code is a skill

● It is critical and important

Tenacity and optimism
● Don’t become complacent with the work you are

doing

● Know your contribution affects the long-term
prospects of the merchant and their business

● You’ve got this!

Thank you! @AlfalfaAnne @outofthesandbox

