
#Devoxx #WebComponents

Horacio Gonzalez
2023-10-02

WebComponents in 2023:
A Complete Exploration

#Devoxx #WebComponents

Who are we?
Introducing myself and
introducing OVHcloud

#Devoxx #WebComponents

Horacio Gonzalez

@LostInBrittany
Spaniard Lost in Brittany

#Devoxx #WebComponents

OVHcloud

30 Data Centers
in 12 locations

34 Points of Presence
on a 20 TBPS Bandwidth Network

2200 Employees
worldwide

115K Private Cloud
VMS running

380K Physical Servers
running in our data centers

1 Million+ Servers
produced since 1999

300K Public Cloud
instances running

1.5 Million Customers
across 132 countries

1.5 Billion Euros Invested
since 2016

20+ Years in Business
Disrupting since 1999

P.U.E. 1.09
Energy efficiency indicator

3.8 Million Websites
hosting

Web Cloud & Telcom

Private Cloud

Public Cloud

Storage

Network & Security

#Devoxx #WebComponents

We want the code!

https://github.com/LostInBrittany/web-components-in-2023/

https://github.com/LostInBrittany/web-components-in-2023/

#Devoxx #WebComponents

What the heck are web component?
The 3 minutes context

#Devoxx #WebComponents

Web Components

Web standard W3C

#Devoxx #WebComponents

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

#Devoxx #WebComponents

Web Components

Create your own HTML tags
Encapsulating look and behavior

#Devoxx #WebComponents

Web Components

Fully interoperable
With other web components, with any framework

#Devoxx #WebComponents

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

#Devoxx #WebComponents

 To define your own HTML tag

Custom Element

<body>
 ...
 <script>

window.customElements.define('my-element',
class extends HTMLElement {...});

 </script>
 <my-element></my-element>
</body>

#Devoxx #WebComponents

To encapsulate subtree and
style in an element

Shadow DOM

<button>Hello, world!</button>
<script>
var host = document.querySelector('button');
const shadowRoot = host.attachShadow({mode:'open'});
shadowRoot.textContent = 'こんにちは、影の世界!';
</script>

#Devoxx #WebComponents

To have clonable document template

Template

<template id="mytemplate">

 <div class="comment"></div>
</template>

var t = document.querySelector('#mytemplate');
// Populate the src at runtime.
t.content.querySelector('img').src = 'logo.png';
var clone = document.importNode(t.content, true);
document.body.appendChild(clone);

#Devoxx #WebComponents

But in fact, itʼs just an element…

● Attributes

● Properties

● Methods

● Events

#Devoxx #WebComponents

Sometimes I feel a bit grumpy
The stories of the grumpy old speaker...

#Devoxx #WebComponents

On Polymer tour since 2014

#Devoxx #WebComponents

Web components == Revolution

Im
ag

e:
 b

u.
ed

u

http://www.bu.edu/today/2014/lego-man/

#Devoxx #WebComponents

Building a world brick by brick

Im
ag

es
: B

itR
eb

el
s

&
Br

ic
ks

et

http://www.bitrebels.com/design/lego-stilettos-a-geek-girls-dream-come-true/
http://images.brickset.com/sets/images/10234-1.jpg?201305300927

#Devoxx #WebComponents

Is the promise unfulfilled?

It's 2023 now, where is your revolution, dude?

#Devoxx #WebComponents

Is it a conspiracy?

#Devoxx #WebComponents

Am I only a dreamer?

#Devoxx #WebComponents

Well, revolution IS there

But it's a silent one...

#Devoxx #WebComponents

I as looking for a great example

#Devoxx #WebComponents

New Reddit runs on Web Components

#Devoxx #WebComponents

Often hidden in plain sight

https://github.com/github/github-elements
https://sap.github.io/ui5-webcomponents/
https://github.com/microsoft/vscode-webview-ui-toolkit
https://learn.microsoft.com/en-us/fluent-ui/web-components/
https://github.com/RedHat-UX/red-hat-design-system
https://web.dev/ps-on-the-web/#web-components-and-lit
https://opensource.adobe.com/spectrum-web-components/

#Devoxx #WebComponents

Vanilla Web Components

#Devoxx #WebComponents

Let's build a vanilla Web Component

Using only HTML, CSS & JS, no library needed

#Devoxx #WebComponents

A very basic web component
class HelloWorld extends HTMLElement {

 // This gets called when the HTML parser sees your tag

 constructor() {

 super(); // always call super() first in the ctor.

 this.msg = 'Hello World!';

 }

 // Called when your element is inserted in the DOM or

 // immediately after the constructor if it’s already in the DOM

 connectedCallback() {

 this.innerHTML = `<p>${this.msg}</p>`;

 }

}

customElements.define('hello-world', HelloWorld);

#Devoxx #WebComponents

Custom Elements:

● Let you define your own HTML tag
with bundled JS behavior

● Trigger lifecycle callbacks

● Automatically “upgrade” your tag
when inserted in the document

#Devoxx #WebComponents

Custom Elements donʼt:

● Scope CSS styles
○ Shadow DOM

● Scope JavaScript
○ ES2015

● “Reproject” children into <slot> elements
○ Shadow DOM

#Devoxx #WebComponents

Adding ShadowDOM
class HelloWithShadowdom extends HTMLElement {

 // This gets called when the HTML parser sees your tag

 constructor() {

 super(); // always call super() first in the ctor.

 this.msg = 'Hello World from inside the ShadowDOM!';

 this.attachShadow({ mode: 'open' });

 }

 // Called when your element is inserted in the DOM or

 // immediately after the constructor if it’s already in the DOM

 connectedCallback() {

 this.shadowRoot.innerHTML = `<p>${this.msg}</p>`;

 }

}

customElements.define('hello-with-shadowdom', HelloWithShadowdom);

#Devoxx #WebComponents

Using web components
<!DOCTYPE html>

<html>

<head>

 <title>Vanilla Web Components</title>

 <script src="./hello-world.js"></script>

 <script src="./hello-with-shadowdom.js"></script>

</head>

<body>

 <hello-world></hello-world>

 <hello-with-shadowdom></hello-with-shadowdom>

</body>

</html>

#Devoxx #WebComponents

Using web components

#Devoxx #WebComponents

Lifecycle callbacks
class MyElementLifecycle extends HTMLElement {
 constructor() {
 // Called when an instance of the element is created or upgraded
 super(); // always call super() first in the ctor.
 }
 static get observedAttributes() {
 // Tells the element which attributes to observer for changes
 return [];
 }
 connectedCallback() {
 // Called every time the element is inserted into the DOM
 }
 disconnectedCallback() {
 // Called every time the element is removed from the DOM.
 }
 attributeChangedCallback(attrName, oldVal, newVal) {
 // Called when an attribute was added, removed, or updated
 }
 adoptedCallback() {
 // Called if the element has been moved into a new document
 }
}

#Devoxx #WebComponents

my-vanilla-counter element
class MyVanillaCounter extends HTMLElement {

 constructor() {

 super();

 this._counter = 0;

 this.attachShadow({ mode: 'open' });

 }

 connectedCallback() {

 this.render();

 this.display();

 }

 static get observedAttributes() { return ['counter'] }

 // We reflect attribute changes into property changes

 attributeChangedCallback(attr, oldVal, newVal) {

 if (oldVal !== newVal) {

 this[attr] = newVal;

 }

}

#Devoxx #WebComponents

my-counter custom element
 // Getter and setters for counter

 get counter() { return this._counter; }

 set counter(value) {

 if (value != this._counter) {

 this._counter = Number.parseInt(value);

 this.setAttribute('counter', value);

 this.display();

 }

 }

 increment() {

 this.counter = this.counter + 1;

 this.dispatchEvent(new CustomEvent('increased',

 {detail: {counter: this.counter}}));

 }

#Devoxx #WebComponents

my-counter custom element
 render() {

 let container = document.createElement('div');

 container.style.display = 'flex';

 ...

 this.style.fontSize = '5rem';

 }

 display() {

 this.output.innerHTML = `${this.counter}`;

 }

}

customElements.define(`my-vanilla-counter`, MyVanillaCounter);

#Devoxx #WebComponents

my-counter-with-templates
let template = `
<style>
 ...
</style>
<div class="container">
 <div id="icon">

 </div>
 <div id="value">
 0
 </div>
</div>
`;

#Devoxx #WebComponents

my-counter-with-templates
 render() {
 let templ = document.createElement('template');
 templ.innerHTML = template;

 this.shadowRoot.appendChild(templ.content.cloneNode(true));

 let button = this.shadowRoot.getElementById('icon');
 button.addEventListener('click', this.increment.bind(this));
 }

 display() {
 console.log(this.shadowRoot.getElementById('value'))
 this.shadowRoot.getElementById('value').innerHTML =
 `${this.counter}`;
 }

#Devoxx #WebComponents

Coding my-counter

#Devoxx #WebComponents

my-counter custom element

#Devoxx #WebComponents

Why those libs?
Why people don't use vanilla?

#Devoxx #WebComponents

Web component standard is low level

At it should be!

#Devoxx #WebComponents

Standard == basic bricks

Standard exposes an API to:
○ Define elements
○ Encapsulate DOM

#Devoxx #WebComponents

Libraries are helpers

They give you higher-level primitives

#Devoxx #WebComponents

Different high-level primitives

Each one tailored to a use

#Devoxx #WebComponents

Sharing the same base

High-performant, low-level, in-the-platform
web components standard

#Devoxx #WebComponents

Libraries aren't a failure of standard

They happen by design

#Devoxx #WebComponents

A library for building reusable,
scalable component libraries

#Devoxx #WebComponents

Not another library

A Web Component toolchain

#Devoxx #WebComponents

A build time tool

To generate standard web components

#Devoxx #WebComponents

Fully featured

● Web Component-based

● Asynchronous rendering pipeline

● TypeScript support

● Reactive Data Binding

● Component pre-rendering

● Simple component lazy-loading

● JSX support

● Dependency-free components

#Devoxx #WebComponents

And the cherry on the cake

Server-Side Rendering

#Devoxx #WebComponents

Stencil leverages the web platform

Working with the web, not against it

#Devoxx #WebComponents

The Stencil story
A company tired of putting good code in the bin

#Devoxx #WebComponents

Once upon a time there was a fight

Between native apps and web app on mobile

#Devoxx #WebComponents

A quest to the perfect solution

Hybrid apps, leveraging on web technologies

#Devoxx #WebComponents

A company wanted to do it well

The perfect technology for mobile web and hybrid apps

#Devoxx #WebComponents

The time is 2013

So what technology would you use?

#Devoxx #WebComponents

Really soon after launch...

Hey folks, we are killing AngularJS!

#Devoxx #WebComponents

What did Ionic people do?

Let's put everything in the trash bin and begin anew

#Devoxx #WebComponents

But times have changed...

In 2013 Angular JS was the prom queen

#Devoxx #WebComponents

Times have changed...

In 2017 Angular is only one more in the clique

#Devoxx #WebComponents

Angular limits adoption of Ionic

Devs and companies are
very vocal about JS Frameworks

#Devoxx #WebComponents

What did Ionic people do?

Let's put everything in the trash bin and begin anew…
But on which framework?

#Devoxx #WebComponents

What about web components?

A nice solution for Ionic problems:
Any framework, even no framework at all!

#Devoxx #WebComponents

But what Web Component library?

There were so many of them!

SkateJS

#Devoxx #WebComponents

Let's do something different

A fully featured web component toolchain
With all the bells and whistles!

#Devoxx #WebComponents

Ionic rewrote all their code again

From Ionic 4 is fully based on Stencil

#Devoxx #WebComponents

Now Ionic works on any framework

Or without framework at all

#Devoxx #WebComponents

And we have Stencil

To use it in any of our projects

#Devoxx #WebComponents

Simply use npm init

Choose the type of project to start

Hands on Stencil

npm init stencil

? Select a starter project.

Starters marked as [community] are developed by the Stencil Community,

rather than Ionic. For more information on the Stencil Community, please see

https://github.com/stencil-community › - Use arrow-keys. Return to submit.

❯ component Collection of web components that can be used anywhere
 app [community] Minimal starter for building a Stencil app or website

 ionic-pwa [community] Ionic PWA starter with tabs layout and routes

#Devoxx #WebComponents

And the project is initialized in some seconds!

Hands on Stencil

✔ Pick a starter › component
✔ Project name › my-stencil-counter
✔ All setup in 17 ms

 $ npm start
 Starts the development server.
 $ npm run build
 Builds your components/app in production mode.
 $ npm test
 Starts the test runner.

 We suggest that you begin by typing:
 $ cd my-stencil-counter
 $ npm install
 $ npm start

 Happy coding! 🎈

#Devoxx #WebComponents

Let's look at the code

#Devoxx #WebComponents

Some concepts

Decorators

import { Component, Prop, h } from '@stencil/core';
import { format } from '../../utils/utils';

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

 @Prop() first: string;

#Devoxx #WebComponents

Some concepts

Properties and States

 @Prop() first: string;

 @Prop() middle: string;

 @Prop() last: string;

 @State() nickname: string;

#Devoxx #WebComponents

Some concepts

Asynchronous rendering using JSX

 render() {
 return <div>Hello, World! I'm {this.getText()}</div>;
 }

#Devoxx #WebComponents

Some concepts

Watch

 @Prop() value: number;

 @Watch(value)
 valueChanged(newValue: boolean, oldValue: boolean) {
 console.log(`The new value is ${newValue}, it was ${oldValue} before`);
 }

#Devoxx #WebComponents

Some concepts

Emitting events

Listening to events

 @Event() actionCompleted: EventEmitter;

 someAction(message: String) {
 this.actionCompleted.emit(message);
 }

 @Listen('actionCompleted')
 actionCompletedHandler(event: CustomEvent) {
 console.log('Received the custom actionCompleted event: ', event.detail);
 }

#Devoxx #WebComponents

Some concepts

Asynchronous public methods

 @Method()
 async sayHello() {
 this.hello = true;
 }

 render() {
 return (
 <Host>
 <h2>{ this.hello ? `Hello sthlm.js` : ''}</h2>
 </Host>
);
 }

#Devoxx #WebComponents

Some concepts

Optional Shadow DOM

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

#Devoxx #WebComponents

Coding my-stencil-counter

#Devoxx #WebComponents

Simple. Fast. Web Components

#Devoxx #WebComponents

Do you remember Polymer

The first Web Component library

#Devoxx #WebComponents

It is deprecated...

And that means good news!

#Devoxx #WebComponents

Let's try to see clearer

Let's dive into Polymer history...

#Devoxx #WebComponents

A tool built for another paradigm

No web component support on browsers
No React, Angular or Vue innovations

#Devoxx #WebComponents

No so well suited for the current one

The current platform is way more powerful
The state of art has evolved

#Devoxx #WebComponents

Let's learn from its lessons

The current platform is way more powerful
The state of art has evolved

#Devoxx #WebComponents

And let it rest...

There will have no Polymer 4...

#Devoxx #WebComponents

So Polymer as we know it is dead...

But the Polymer Project is indeed alive!

#Devoxx #WebComponents

But I have invested so much on it!

What to do?

#Devoxx #WebComponents

That's why web components are top

You can keep using all your Polymer components and
create the new ones with a new library… And it simply works!

#Devoxx #WebComponents

Born from the Polymer team

For the new web paradigm

#Devoxx #WebComponents

Modern lightweight web components

For the new web paradigm

#Devoxx #WebComponents

Based on lit-html

An efficient, expressive, extensible
HTML templating library for JavaScript

#Devoxx #WebComponents

Do you know tagged templates?

Little known functionality of template literals

function uppercase(strings, ...expressionValues) {
 var finalString = ''
 for (let i = 0; i < strings.length; i++) {
 if (i > 0) {
 finalString += expressionValues[i - 1].toUpperCase()
 }
 finalString += strings[i]
 }
 return finalString
}
const expressions = ['Sophia Antipolis', 'RivieraDev', 'Thank you'];
console.log(uppercase`Je suis à ${expression[0]} pour ${expression[1]}.
${expression[2]}!`

#Devoxx #WebComponents

lit-html Templates

 Lazily rendered
Generates a TemplateResult

let myTemplate = (data) => html`
 <h1>${data.title}</h1>
 <p>${data.body}</p>
`;

#Devoxx #WebComponents

It's a bit like JSX, isn't it?

The good sides of JSX… but in the standard!

#Devoxx #WebComponents

LitElement

Lightweight web-components using lit-html

import { LitElement, html } from 'lit-element';

// Create your custom component
class CustomGreeting extends LitElement {
 // Declare properties
 static get properties() {
 return {
 name: { type: String }
 };
 }
 // Initialize properties
 constructor() {
 super();
 this.name = 'World';
 }
 // Define a template
 render() {
 return html`<p>Hello, ${this.name}!</p>`;
 }
}
// Register the element with the browser
customElements.define('custom-greeting', CustomGreeting);

#Devoxx #WebComponents

Coding my-lit-counter

#Devoxx #WebComponents

Web Components & Frameworks
Less “either/or” and more “both/and”

#Devoxx #WebComponents

Compatibility is on Web Components
side

Web Components everywhere, baby!

#Devoxx #WebComponents

They are the interoperable alternative

Any framework… or no framework at all

#Devoxx #WebComponents

You can have a single implementation

And it simply works everywhere*

#Devoxx #WebComponents

*React don't fully support them yet

Long story made short: use lit-labs/react

#Devoxx #WebComponents

When you need interoperability

Nothing beats the standard

#Devoxx #WebComponents

Angular can generate web components

Angular Elements

#Devoxx #WebComponents

Vue can generate web components

With defineCustomElement()

#Devoxx #WebComponents

React can generate web components

But it can generate them too

#Devoxx #WebComponents

What about Svelte?

Let's look in detail one case

#Devoxx #WebComponents

Web Components & Design Systems
One of the best cases for Web Components

#Devoxx #WebComponents

So, what are Design Systems?
And why should I look at them?

#Devoxx #WebComponents

A talk for devs by a dev

I am not a designer, neither I play one on TV...

#Devoxx #WebComponents

The same or different?

#Devoxx #WebComponents

A document listing the styles, patterns, practices,
and principles of a brand design standards

Style Guides

#Devoxx #WebComponents

Style guides define the applicationʼs look and feel

Style Guides

#Devoxx #WebComponents

Style Guide Example: Uber

https://brand.uber.com/

https://brand.uber.com/

#Devoxx #WebComponents

Style Guide Example: Medium

 https://www.behance.net/gallery/7226653/Medium-Brand-Development

#Devoxx #WebComponents

Style Guides alone are ambiguous

Interpretation needed to adapt
the preconisation to the use case

#Devoxx #WebComponents

Component Catalogs

A component catalog is a repository of components,
with one or several implementations, code examples

and technical documentation

#Devoxx #WebComponents

Component Catalog example: Bootstrap

https://getbootstrap.com/

#Devoxx #WebComponents

Component Catalog Example: ING's Lion

https://lion-web-components.netlify.app/

#Devoxx #WebComponents

Catalogs alone create inconsistency

Like using the same LEGO bricks
to create very different objects

#Devoxx #WebComponents

A Design System is like a common visual
language for product teams

Design Systems

#Devoxx #WebComponents

A Design System is a set of design standards,
documentations, and principles, alongside with the

toolkit (UI patterns and code components)
to achieve those standards

Design systems

#Devoxx #WebComponents

Design systems

#Devoxx #WebComponents

Example: Carbon Design System

https://www.carbondesignsystem.com/

#Devoxx #WebComponents

Example: Firefox's Photon Design System

https://design.firefox.com/photon/

#Devoxx #WebComponents

Example: Material Design

https://material.io/

#Devoxx #WebComponents

The component catalog
The poor relative of the Design System family

#Devoxx #WebComponents

Let's choose a simple example

Bootstrap based component catalogs

#Devoxx #WebComponents

A long time ago

Components defined in HTML, CSS and some jQuery

#Devoxx #WebComponents

Then it was AngularJS time...

And new reference implementations were needed

#Devoxx #WebComponents

But you know the sad story...

All UI Bootstrap based catalogs woke up with
an obsolete implementation

#Devoxx #WebComponents

Worry no more, let's do Angular!

ng-bootstrap to the rescue

#Devoxx #WebComponents

But times had changed...

In 2017 Angular is only one more in the clique

#Devoxx #WebComponents

 React is the new Big ThingTM

So let's build React Bootstrap...

#Devoxx #WebComponents

Wait, what about Vue?

We also need BootstrapVue

#Devoxx #WebComponents

OK, I think you see my point...

#Devoxx #WebComponents

Most Design System do a choice

Either they choose a canonical implementation
or they ship and maintain several implementations

#Devoxx #WebComponents

Both choices are problematic

Shipping only one implementation:
Web dev ecosystem changes quickly and

almost nobody keeps the same framework for years...

#Devoxx #WebComponents

Both choices are problematic

Shipping several implementations:
You need to maintain all the implementation…

and you still miss some others

#Devoxx #WebComponents

Incomplete catalogs are problematic

People will need to recode the components
in their chosen framework…

Coherence is not guaranteed!!!

#Devoxx #WebComponents

Example: Carbon Design System

#Devoxx #WebComponents

Web Components & Design Systems
A match made in heaven

#Devoxx #WebComponents

Compatibility is on Web Components
side

Web Components everywhere, baby!

#Devoxx #WebComponents

Do you remember AngularJS?

And all the code put in the trash bin
when Angular arrived...

#Devoxx #WebComponents

The pain of switching frameworks?

Rewriting once again your code...

#Devoxx #WebComponents

The impossibility of sharing UI code?

Between apps written with different frameworks

#Devoxx #WebComponents

Web Components change that

In a clean and standard way

#Devoxx #WebComponents

They are the interoperable alternative

Any framework… or no framework at all

#Devoxx #WebComponents

They are truly everywhere 🚀

🚀 Even in the spaaaaaaaace 🚀

#Devoxx #WebComponents

You can have a single implementation

And it simply works everywhere

#Devoxx #WebComponents

When you need interoperability

Nothing beats the standard

#Devoxx #WebComponents

But how to do it?
Designing, developing and managing

a catalog of Web Components

#Devoxx #WebComponents

Learning from the best

https://lion-web-components.netlify.app/

#Devoxx #WebComponents

Learning from the best

https://github.com/CleverCloud/clever-components

#Devoxx #WebComponents

What kind of components?
From little atomic blocs to big smart components,

and everything in between

#Devoxx #WebComponents

A matter of size and complexity

What kind(s) of components you want to build

#Devoxx #WebComponents

Build from the bottom and go up

 Eat your own dog food

#Devoxx #WebComponents

And how to choose the atoms?

Flexibility and configurability are key

#Devoxx #WebComponents

And how to choose the atoms?

Encode often used patterns

#Devoxx #WebComponents

And what about the molecules?

Capitalize on your atoms
Keep the flexibility and configurability

#Devoxx #WebComponents

Big smart business components

Encoding your business logic

#Devoxx #WebComponents

Internal or external customers?

Who are your target users?

#Devoxx #WebComponents

Internal customers need off-the-shelf components

A well defined and coherent look-and-feel

#Devoxx #WebComponents

External customers need to be able to tweak

Theming and customizing components

#Devoxx #WebComponents

How to organize the catalog
Packages, imports and pragmatism

#Devoxx #WebComponents

A single repository

Single source of truth for the catalog

#Devoxx #WebComponents

Two schools of thought

A packet per component or a global one

#Devoxx #WebComponents

Two schools of thought

Individual versioning vs global one

#Devoxx #WebComponents

Driving-up adoption
Making devs use your components

#Devoxx #WebComponents

Think who are your target users

Users of any framework current or future...

#Devoxx #WebComponents

They aren't used to your library

And they shouldn't need to be

#Devoxx #WebComponents

Go the extra mile to drive up adoption

So they don't need to do it

#Devoxx #WebComponents

Make it easy to use

As easy as a HTML tag

#Devoxx #WebComponents

Document every composant

How to use, inputs/outputs, examples...

#Devoxx #WebComponents

Documentation isn't enough

Storybook make adoption easy

#Devoxx #WebComponents

Keeping a coherent writing style

Write down your guidelines

#Devoxx #WebComponents

I18n shouldn't be an afterthought

Prepare everything for internationalization

#Devoxx #WebComponents

That's all, folks!
Thank you all!

