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Refactoring 101

● About me

– PHP 5.3 Certified

– Consultant at Zend Technologies

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance (ultra) runner

– Judo Black Belt Instructor
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● Fan of iteration

– Pretty much everything requires iteration to do well:

● Long distance running
● Judo
● Development
● Evading project managers
● Refactoring!
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Refactoring 101

● About talk

– Based on “Refactoring; Improving The Design of Existing Code” book, by 
Martin Fowler.

– https://github.com/adamculp/refactoring101 – for PHP code samples
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● What is “refactoring”?

– “...process of changing a computer program's source code without 
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

– Should not add functionality

– Simplify code

– Improve code readability
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● Two hats

– Adding Functionality Hat

– Refactoring Hat

– We add functionality, then refactor, then add more functionality ...
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● Then optimize

– Do not optimize while refactoring

– Separate step

– Refactoring is NOT optimizing
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Refactoring 101

● Why refactor?

– Prevent decay

– Preserve or fix design

– Reduce duplication

– Improve maintainability

– Helps us code faster

– Locate bugs

– Code smells
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● Code “smells”

– What are “smells”?

● Indications of spoiled code nearby
● Not conclusive
● The “smell” is not bad
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● Code “smells”

– “Smells” hinting a refactor may be needed:

● Duplicate Code (rule of 3)
● Long Methods
● Large Class
● Long Parameter (argument) List
● Divergent Change – cascade change to accommodate another
● Shotgun Surgery – change ripples as bugs
● Feature Envy – method uses parts from other class
● Switch Statements – sacrifice polymorphism
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● Code “smells”

– Cont'd:

● Lazy Class – class not doing much
● Speculative Generality – something built for possible future
● Temporary Field/Variable
● Message Chains – object asking object asking object
● Middle Man – directors in place but serve no real purpose
● Inappropriate Intimacy – classes share private parts
● Data Class – getters and setters, but nothing else
● Comments – where comments cover bad code
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● Tools to highlight smells

– PHPqatools.org

● PHPUnit
● PHPLoc
● PHP_Codesniffer
● PHP_Depend
● PHP Copy/Paste Detector
● PHP Mess Detector
● PHP Dead Code Detector
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● Realtime profiling

– Zend Z-Ray
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● Rewrite vs Refactor

– Rewrite = perceived easy road

– Refactor = best teacher

– Business arguments

● Budget
● Time
● Retain business logic
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● When to rewrite

– Want a new app

● Not just better coded current app

– Business logic change

– Target market change

– Framework integration or change
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● When to refactor?

– No “special” time

– Short bursts

– Refactor to gain something

– Prior to adding functionality

– When fixing a bug

– During code review
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● What do I tell my manager? (justification)

– Tech savvy manager = not be hard to explain the benefits.

– Quality centric manager = stress quality aspects.

● Introduce as a review process.
● Many resources on Google.

– Schedule driven manager = Don't tell (controversial?).

● Find a way to work it in.
● Overall it saves time, but some will never “see” it.
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● First steps

– Use source control (Git, SVN, etc.)

● Records steps, provides rollback
● Auditable

– GET IT WORKING

● Do NOT refactor broken

– Create consistent data

– Create tests
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Refactoring 101

● Tests and refactoring

– Basic refactor steps

● Ensure tests pass
● Plan refactor
● Implement
● Ensure tests still pass

– Updating tests if needed
– Add more tests to cover newly discovered items

● Repeat!
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Let's look at the code!

● Example

– Lets look at a code example.

– Tips and descriptions during steps.

– Our Task:

● Video Rental Company has asked for an HTML representation of their 
customer statement to be created.
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● Code summary: What did we see?

– Method  statement()→

● Too long
● Not reusable for HTML version
● Switch sacrificing polymorphism
● Determining class/type
● Calculating rental price, frequent renter points, grant total
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● Additional notes

– Cannot change how movies are classified.

– Customers always changes, not easy in current state.

● Movie classification
● Frequent renter points
● Rental days per type
● Price calculation
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Refactoring 101

● Objective:

– Clean up statement().

● Shorten

– Extract code to encapsulate functionality
– Extract business logic to keep DRY
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● TEST ! ! !
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● Extract method

– Moves a functionality to it's own method.

● Encapsulate calculation of each rental.
● Shorten statement() method.
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● Extract method cont'd.

– We now have a new method amountFor().
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● Rename variables

– Renaming $each to $rental

– Improves readability.

– Relate intent.
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● Renaming variables, cont'd.

– Renamed $each to $rental, and also changed $thisAmount to become 
$result for clarity.
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● Rename method

– Rename amountFor() to getCharge().

– Self documenting.
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● Move method

– Move getCharge() from Customer to Rental.

● Relies on Rental data.

– Already have Rental object, no need to pass $rental.
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● Move method cont'd

– Now calls getDaysRented() directly.

– Returns charge of Rental, as it should.

● Building rental charge in customer was misplaced.
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● Replace temp with query

– Remove temporary variable and call Rental->getCharge() direct.

● Less future maintenance.
● Makes code clearer.
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● Extract method

– $frequentRenterPoints calculation extracted to 
getFrequentRenterPoints(), and move it in the Rental class.
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● Replace temp with query

– Encapsulate logic and generation of grand total.

– Promotes DRY.

– Remove $totalAmount temporary variable.
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● Replace temp with query

– Encapsulate logic and generation of frequent renter points.

– Promotes DRY.

– Remove $frequentRentalPoints temporary variable.
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● Create HTML statement

– Create HTML version.

– Rename original as text version.
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● Execution

– Can call either Text or HTML versions.
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● Recap

– Most refactoring reduces code

● More self-documenting
● More flexibility
● More testable

– 3 loops (getFrequentRenterPoints, getTotalCharge, and statement)

● Isolates calculations
● Enabled multiple statements (text/html)

– Optimizing and refactoring = different

● Refactor, then optimize

– Future = separation of concerns
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● Conclusion

– Do not refactor a broken application

– Always have tests in place prior to refactor

● Unit tests or
● Functional tests or
● Manual tests

– Leave code cleaner than you got it

– Try NOT to rewrite

– Learn to “smell” problems

– Love iteration!



 

● Thank you!

– Code: https://github.com/adamculp/refactoring101 

– Please rate at: https://joind.in/14927

Adam Culp

http://www.geekyboy.com

http://RunGeekRadio.com 

Twitter @adamculp
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