

Refactoring 101

By:

Adam Culp
Twitter: @adamculp

https://joind.in/14927

2

Refactoring 101

● About me

– PHP 5.3 Certified

– Consultant at Zend Technologies

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance (ultra) runner

– Judo Black Belt Instructor

3

Refactoring 101

● Fan of iteration

– Pretty much everything requires iteration to do well:

● Long distance running
● Judo
● Development
● Evading project managers
● Refactoring!

4

Refactoring 101

● About talk

– Based on “Refactoring; Improving The Design of Existing Code” book, by
Martin Fowler.

– https://github.com/adamculp/refactoring101 – for PHP code samples

6

Refactoring 101

● What is “refactoring”?

– “...process of changing a computer program's source code without
modifying its external functional behavior...” en.wikipedia.org/wiki/Refactoring

– Should not add functionality

– Simplify code

– Improve code readability

7

Refactoring 101

● Two hats

– Adding Functionality Hat

– Refactoring Hat

– We add functionality, then refactor, then add more functionality ...

8

Refactoring 101

● Then optimize

– Do not optimize while refactoring

– Separate step

– Refactoring is NOT optimizing

9

Refactoring 101

● Why refactor?

– Prevent decay

– Preserve or fix design

– Reduce duplication

– Improve maintainability

– Helps us code faster

– Locate bugs

– Code smells

10

Refactoring 101

● Code “smells”

– What are “smells”?

● Indications of spoiled code nearby
● Not conclusive
● The “smell” is not bad

11

Refactoring 101

● Code “smells”

– “Smells” hinting a refactor may be needed:

● Duplicate Code (rule of 3)
● Long Methods
● Large Class
● Long Parameter (argument) List
● Divergent Change – cascade change to accommodate another
● Shotgun Surgery – change ripples as bugs
● Feature Envy – method uses parts from other class
● Switch Statements – sacrifice polymorphism

12

Refactoring 101

● Code “smells”

– Cont'd:

● Lazy Class – class not doing much
● Speculative Generality – something built for possible future
● Temporary Field/Variable
● Message Chains – object asking object asking object
● Middle Man – directors in place but serve no real purpose
● Inappropriate Intimacy – classes share private parts
● Data Class – getters and setters, but nothing else
● Comments – where comments cover bad code

14

Refactoring 101

● Tools to highlight smells

– PHPqatools.org

● PHPUnit
● PHPLoc
● PHP_Codesniffer
● PHP_Depend
● PHP Copy/Paste Detector
● PHP Mess Detector
● PHP Dead Code Detector

15

Refactoring 101

● Realtime profiling

– Zend Z-Ray

16

Refactoring 101

● Rewrite vs Refactor

– Rewrite = perceived easy road

– Refactor = best teacher

– Business arguments

● Budget
● Time
● Retain business logic

17

Refactoring 101

● When to rewrite

– Want a new app

● Not just better coded current app

– Business logic change

– Target market change

– Framework integration or change

18

Refactoring 101

● When to refactor?

– No “special” time

– Short bursts

– Refactor to gain something

– Prior to adding functionality

– When fixing a bug

– During code review

19

Refactoring 101

● What do I tell my manager? (justification)

– Tech savvy manager = not be hard to explain the benefits.

– Quality centric manager = stress quality aspects.

● Introduce as a review process.
● Many resources on Google.

– Schedule driven manager = Don't tell (controversial?).

● Find a way to work it in.
● Overall it saves time, but some will never “see” it.

20

Refactoring 101

● First steps

– Use source control (Git, SVN, etc.)

● Records steps, provides rollback
● Auditable

– GET IT WORKING

● Do NOT refactor broken

– Create consistent data

– Create tests

21

Refactoring 101

● Tests and refactoring

– Basic refactor steps

● Ensure tests pass
● Plan refactor
● Implement
● Ensure tests still pass

– Updating tests if needed
– Add more tests to cover newly discovered items

● Repeat!

22

Refactoring 101

Let's look at the code!

● Example

– Lets look at a code example.

– Tips and descriptions during steps.

– Our Task:

● Video Rental Company has asked for an HTML representation of their
customer statement to be created.

23

Refactoring 101

24

Refactoring 101

25

Refactoring 101

26

Refactoring 101

27

Refactoring 101

28

Refactoring 101

29

Refactoring 101

● Code summary: What did we see?

– Method statement()→

● Too long
● Not reusable for HTML version
● Switch sacrificing polymorphism
● Determining class/type
● Calculating rental price, frequent renter points, grant total

30

Refactoring 101

● Additional notes

– Cannot change how movies are classified.

– Customers always changes, not easy in current state.

● Movie classification
● Frequent renter points
● Rental days per type
● Price calculation

31

Refactoring 101

● Objective:

– Clean up statement().

● Shorten

– Extract code to encapsulate functionality
– Extract business logic to keep DRY

32

Refactoring 101

● TEST ! ! !

33

Refactoring 101

● Extract method

– Moves a functionality to it's own method.

● Encapsulate calculation of each rental.
● Shorten statement() method.

34

Refactoring 101

● Extract method cont'd.

– We now have a new method amountFor().

35

Refactoring 101

● Rename variables

– Renaming $each to $rental

– Improves readability.

– Relate intent.

36

Refactoring 101

● Renaming variables, cont'd.

– Renamed $each to $rental, and also changed $thisAmount to become
$result for clarity.

37

Refactoring 101

● Rename method

– Rename amountFor() to getCharge().

– Self documenting.

38

Refactoring 101

● Move method

– Move getCharge() from Customer to Rental.

● Relies on Rental data.

– Already have Rental object, no need to pass $rental.

39

Refactoring 101

● Move method cont'd

– Now calls getDaysRented() directly.

– Returns charge of Rental, as it should.

● Building rental charge in customer was misplaced.

40

Refactoring 101

● Replace temp with query

– Remove temporary variable and call Rental->getCharge() direct.

● Less future maintenance.
● Makes code clearer.

41

Refactoring 101

● Extract method

– $frequentRenterPoints calculation extracted to
getFrequentRenterPoints(), and move it in the Rental class.

42

Refactoring 101

● Replace temp with query

– Encapsulate logic and generation of grand total.

– Promotes DRY.

– Remove $totalAmount temporary variable.

43

Refactoring 101

● Replace temp with query

– Encapsulate logic and generation of frequent renter points.

– Promotes DRY.

– Remove $frequentRentalPoints temporary variable.

44

Refactoring 101

● Create HTML statement

– Create HTML version.

– Rename original as text version.

45

Refactoring 101

● Execution

– Can call either Text or HTML versions.

46

Refactoring 101

● Recap

– Most refactoring reduces code

● More self-documenting
● More flexibility
● More testable

– 3 loops (getFrequentRenterPoints, getTotalCharge, and statement)

● Isolates calculations
● Enabled multiple statements (text/html)

– Optimizing and refactoring = different

● Refactor, then optimize

– Future = separation of concerns

59

Refactoring 101

● Conclusion

– Do not refactor a broken application

– Always have tests in place prior to refactor

● Unit tests or
● Functional tests or
● Manual tests

– Leave code cleaner than you got it

– Try NOT to rewrite

– Learn to “smell” problems

– Love iteration!

● Thank you!

– Code: https://github.com/adamculp/refactoring101

– Please rate at: https://joind.in/14927

Adam Culp

http://www.geekyboy.com

http://RunGeekRadio.com

Twitter @adamculp

	Intro
	About me
	Iteration
	Refactoring Book
	Refactoring hat
	Two hats
	Optimization Step
	Why refactor
	Code Smells
	Code smell list 1
	Code smell list 2
	Smell Tools - PHPQaTools
	Smell Tools - Z-Ray
	Rewrite vs Refactor
	Slide 17
	When to refactor
	Managers
	First steps
	Tests before refactor
	To the code
	Movie class
	Rental class
	Customer class
	Statement method
	Statement method cont
	Usage
	Summary
	Additional notes
	Objective
	Test 01
	Extract method
	Extract method cont
	Rename variable
	Rename variable cont
	Rename method
	Move method
	Move method cont
	Replace temp with query
	Extract method again
	Replace temp with query again
	Replace temp with query another time
	Create HTML statement
	Execution change
	Recap
	Conclusion
	Thank you

