Asynchronous Programming in PHP

Lochemem Bruno Michael

'phpcon
A4 VA v
'V V4

A %4 a4 4
GONFERENGE JAPAN 2821

Agenda

VVYyVYVYVYVYVYVYVYY

Introduction

The rigors of I/0

Asynchrony

The asynchronous PHP landscape
The event loop

Streams

Promises

Sockets

HTTP Servers

Command Line applications

Lochemem Bruno Michael

https://chemem.site
@agiroLoki
@ace41l

https://chemem.site
https://twitter.com/agiroLoki
https://github.com/ace411

Swhoami

&

W/
ol

» PHP/JS/C++ enthusiast

Swhoami

\Y
S 2
o o

» PHP/JS/C++ enthusiast
» Functional Programming aficionado

Swhoami

» PHP/JS/C++ enthusiast
» Functional Programming aficionado
» Maintainer of several packages and PHP extensions

Swhoami

» PHP/JS/C++ enthusiast

» Functional Programming aficionado

» Maintainer of several packages and PHP extensions
» Author

Swhoami

» PHP/JS/C++ enthusiast

» Functional Programming aficionado

» Maintainer of several packages and PHP extensions
» Author

» Hooper

Swhoami

PHP/JS/C++ enthusiast

Functional Programming aficionado

Maintainer of several packages and PHP extensions
Author

Hooper

Gamer

vVvyvVvyvVvyyvyy

A lot of usable software is a
combination of Input-Output (I/0)
operations

I1/0 everywhere?

» Filesystem interactions
» Database interactions
» Reading from Standard Input (STDIO)
» Writing to Standard Output (STDOUT)
» API calls (REST, SOAP)

I/0is slow

Access type Latency (ns)
L1 cache reference 0.5
Send packet CA->Holland->CA 150,000,000

Fun fact
If you multiply the durations by a billion, the former’s latency is the equivalent of one
heartbeat, and the latter’s approximates an entire Bachelor’s degree program.

Source: Latency numbers every programmer should know

https://gist.github.com/hellerbarde/2843375

Traditional PHP is, despite recent
Improvements, not immune to this
problem

Blocking I/0 Galore

» Sequential execution of

function calls oo
. . . $get = fn (string $uri) => I0(fn () => file_get_contents($uri));
» Multiple idle periods
between Successive $fst = $get('https://host/path');
eXeCutiOnS $snd = $get('https://host/path?query’);

» Direct result-to-variable
binding

Conventional HTTP configuration with PHP

oan
LN — _1 S N ——

BROWSER APACHE PHP

wn
L)
—

» Traditional LAMP stack

Conventional HTTP configuration with PHP

oan
LN — _1 S N ——

BROWSER APACHE PHP

wn
L)
—

» Traditional LAMP stack
» Often tuned up with PHP-FPM

Conventional HTTP configuration with PHP

oan
LN — _1 S N ——

BROWSER APACHE PHP

wn
L)
—

» Traditional LAMP stack
» Often tuned up with PHP-FPM
» Still works!

I/0’s only gotten more arduous

» Live data

I/0’s only gotten more arduous

» Live data
» Server-Sent Events (SSE)

I/0’s only gotten more arduous

» Live data
» Server-Sent Events (SSE)
» Robust HTTP APIs

I/0’s only gotten more arduous

» Live data

» Server-Sent Events (SSE)
» Robust HTTP APIs

» & more

Asynchrony is a potent answer to
I/0-related problems

So, what is it?

The ability to run multiple processes, independent of main program
flow - by interleaving them in a single execution thread.

What are the requirements?

» An event loop

What are the requirements?

» An event loop
» A proxy mechanism for handling undetermined values

What are the requirements?

» An event loop
» A proxy mechanism for handling undetermined values
» A lot of un-buffered data

What are the requirements?

» An event loop

» A proxy mechanism for handling undetermined values
» A lot of un-buffered data

» A single-threaded runtime

All the way asynchronous

Pretty popular

But PHP is well-suited to the
needs of asynchrony despite not
offering it out-of-the-box

The asynchronous PHP landscape

Tool Distribution Resemblances

ReactPHP Composer Node.JS
Amp Composer Go, Node.JS
Swoole PECL Go, Node.JS

The original React

https://reactphp.org

What is React?

A suite of packages - based on the Reactor pattern - intended to enable
event-driven programming in PHP.

» Event loop

What is React?

A suite of packages - based on the Reactor pattern - intended to enable
event-driven programming in PHP.

» Event loop

» Stream abstraction

What is React?

A suite of packages - based on the Reactor pattern - intended to enable
event-driven programming in PHP.

» Event loop
» Stream abstraction

» HTTP client and server

What is React?

A suite of packages - based on the Reactor pattern - intended to enable
event-driven programming in PHP.

» Event loop
» Stream abstraction
» HTTP client and server

» Child processes

At the core of many event-driven
systems is the event loop.

The event loop

> Alow-level dispatcher oo

while ($running) {
= readEvents();
ble = writeEvents();

» A quasi-scheduler

Monitors an execution
context for events

foreach ($async as

Dispatches handler to event , dnepRici i)

Can be written in PHP. ’

c = stream_select($readable

The event loop

o0
> LiStenS fOf‘ eventS and use React\EventLoop\Loop;
dispatches actions to
process them vetilie = B
> Renders evepythlr!g In |tS Loop: :addPeriodicTimer(5, function () use (&$count) {
context non-blocking $count += 1;
» Runs until the point of event echo $count . PHP_EOL;

completion or stoppage b2k

Want more power? Plugin a
suitable extension!

> ext-ev
> ext-uv
> ext-event

$ pecl install ev && echo 'extension=ev' >> /path/to/php.ini

How iIs data conveyed in an
event-driven system?

How iIs data conveyed in an
event-driven system?

Usually, as a stream...

$ composer require react/stream

Streams

(X X}
> Typlca”y un-buffered use React\Stream\ReadableResourceStream;
sequences of data
) $readable = new ReadableResourceStream(STDIN);
» Can be connected in
pipelines

$readable->on('data', function (?string $chunk) {

» Readable (like STDIN) echo $chunk . PHP_EOL;
B

Streams

» Typically un-buffered
sequences of data

» Can be connected in
pipelines

» Writable (like STDOUT)

use React\Stream\ReadableResourceStream;
use React\Stream\WritableResourceStream;

$readable = new ReadableResourceStream(STDIN);
$writable = new WritableResourceStream(STDOUT);

$readable->pipe($writable);

Streams

» Typically un-buffered
sequences of data

» Can be connected in
pipelines

» Duplex (like TCP/IP or file in
read/write mode)

use React\Stream\DuplexResourceStream;

$stream = new DuplexResourceStream(
fopen('path/to/file', 'w+'),

);

$stream->write('Hello');

What about data propagation and
action chains?

What about data propagation and
action chains?

How about promises?

$ composer require react/promise

(X X
use React\Promise\Promise;

$promise = new Promise(

function (callable $resolve, callable $reject) {
// eilther resolve or reject an arbitrary action

1
)5

$promise->then(
function ($success) {

// success handler (invoked after resolving value)

}’
function ($failure) {
// failure handler (invoked upon rejection)

How about something practical?

How about something practical?

Like a simple socket-powered chat?

$ composer require react/socket

use React\Socket\Connector;
use React\Stream\ReadableResourceStream;
use React\Stream\WritableResourceStream;

$readable = new ReadableResourceStream(STDIN);
$writable new WritableResourceStream(STDOUT);

$connector = new Connector;

$connector
->connect('<address>:<port>"')
->then(
// send input to server and print result
fn ($conn) $readable->pipe($conn)->pipe($writable),
fn ($err) => $writable->write($err->getMessage()),
)

Trying to set up an HTTP server? PHP is all you

need.

<>

v

[y

BROWSER PHP

$ composer require react/http

v
wn
)
=]

use React\Http\HttpServer;

use React\Http\Message\Response;

use React\Socket\SocketServer;

use Psr\Http\Message\ServerRequestInterface as Request;

$http = new HttpServer(
fn (Request $request) =>
new Response(
200,
['content-type' => 'text/plain'l],
‘Hello world!",
),
)5

$socket = new SocketServer('127.0.0.1:8080');
$http->listen($socket);

Client

» Promise-driven HTTP client

» Akin to JavaScript’s fetch
API

» Easy to use

» Also PSR-compliant

use React\Http\Browser;
use Psr\Http\Message\ResponseInterface as Response;

$browser = new Browser;

$req = $browser->get('http://host/path')->then(
function (Response $response) {
echo $response->getBody()->getContents() . PHP_EOL;
b
)5

A neat microframework built atop ReactPHP

$ composer require clue/framework-x:dev-main

https://framework-x.clue.engineering/

framework-x

use FrameworkX\App;

» Cr‘eated and malntalned by use React\Http\Message\Response;
Clue.engineeplng use Psr\Http\Message\ServerRequestInterface as ServerRequest;

$app = new App;

» Process all kinds of data

) $app->get('/', fn () => new Response(200, [1, 'Hello world'));
(.json, .csyv, .xml etc)
$app->get(
q = ' /users/{name}',
Ru'n In any enV”‘Onment fn (ServerRequest $request) =>
. new Response(, [1, 'Hello, ' . $request->getAttribute('name')),
Go from RAD to production)

in minutes

$app->run();

https://clue.engineering

. :
/‘ Drift

$ composer create-project drift/skeleton -sdev

DriftPHP

» Created and maintained by
Marc Morera

» Non-blocking Symfony
kernel

Promise-driven controllers

Asynchronous components
(command bus, file watcher
etc)

use Symfony\Component\HttpFoundation\JsonResponse;
use Symfony\Component\HttpFoundation\Request;
use function React\Promise\resolve;

class HelloWorldController
{
public function __1invoke(Request $request)
{
return resolve(
new JsonResponse(['message’ => 'Hello World'l],
)
}
}

https://mmoreram.com/

So, you want to run blocking code
In an event-driven system?

So, you want to run blocking code
In an event-driven system?

This is conventionally a no-no but...

So, you want to run blocking code
In an event-driven system?

This is conventionally a no-no but...

$ composer require chemem/asyncify

Synchronous to asynchronous

use React\EventLoop\Loop;
use function Chemem\Asyncify\call;

» Works on many non-blocking

PHP functions $call = call(Loop::get());
AR g - $exec = $call('file_get_contents', ['path/to/file'])->then(
> UtlllzeS Chlld pr‘OCeSS I/O function (?string $contents) {
sy h tents . PHP_EOL;
» Supports FP and traditional , peontents . PR
OO appr‘oaches function (Throwable $err) {

echo $err->getMessage() . PHP_EOL;
1,

How about applications that run
In the console?

Also considered user-facing software

$ composer require clue/stdio-react

use Clue\React\Stdio\Stdio;

$stdio = new Stdio;
$stdio->setPrompt('>>> ');

$stdio->on('data’', function (?string $line) use ($stdio) {
$data = rim($line, "\r\n");

// process data arbitrarily here and convey output
$stdio->write('-> ' . $data . PHP_EOL);

// terminate REPL when user inputs 'exit'
if ($line === ‘'exit') {
$stdio->end();

1H;

ReactPHP has a vibrant
ecosystem

Check out the ReactPHP wiki

https://github.com/reactphp/wiki

ReactPHP has a vibrant
ecosystem

Check out the ReactPHP wiki

» Itis growing

https://github.com/reactphp/wiki

ReactPHP has a vibrant
ecosystem

Check out the ReactPHP wiki

» Itis growing
» Package updates are regularly released

https://github.com/reactphp/wiki

Additional Material

» ReactPHP documentation

» Asynchronous Programming in PHP

» Learning Event-Driven PHP with ReactPHP
» Entries in Sergey Zhuk’s blog

https://reactphp.org
https://www.phparch.com/article/asynchronous-programming-in-php/
https://leanpub.com/event-driven-php
https://sergeyzhuk.me/blog/

Please give asynchronous PHP a
try. You likely won’t regret it!

Please give asynchronous PHP a
try. You likely won’t regret it!

» Write a simple REST API

Please give asynchronous PHP a
try. You likely won’t regret it!

» Write a simple REST API
» Write a simple shell

Please give asynchronous PHP a
try. You likely won’t regret it!

» Write a simple REST API
» Write a simple shell
» Write a basic asynchronous I/0 script

Thank you

