Beyond the Code / SBOM

Supply Chain Security

Anant Shrivastava

o Chief researcher @ Cyfinoid Research
o 15+ yrs of corporate exposure
« Speaker / Trainer: BlackHat, cOcOn, nullcon, RootConf, RuxCon

« Project Lead:
o Code Vigilant (Code Review Project)

o Hacking Archives of India,

o TamerPlatform (Android Security)

« (@anantshrion social platforms) https://anantshri.info

https://anantshri.info/

Supply chain

[enol customer}
[end cus‘tomef‘}

Supplief
(tier 2)

N\

' re‘tojler
[retailer }

compu‘tef‘
retailer

Raw Material

AN

Supplie,r

Raw Material
Su lier
ee \[Supphef’s J

Suppliej"s
Supp[ief
(tier 2)

Plastic
Granulate

R J / [“'"°"°-“‘“J
= >(=

end customer
computer
whor;saler

Laptop
customer

/N

/NN

-

Row Material
i Supphef

erude ol

't’s a chain like any other chain

Producers Access 3™ party Consumers
(3rd Party Lib (software
\ELED) components created developers)

Download
/ Use
Software

Store

Store

Download End User

Infrastructure Provider
Customers

Software Supply chain

Development Code CI/CD Container Runtime /

Environment Repository Pipelines Environments Cloud
Environments

O 0
VWV
0«0

Dependencies

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

What can
o0 Wrong

KEN THOMPSON
Quick History Lesson

INTRODUCTION programs. I would like to present to you the cutest
I thank the ACM for this award. I can’t help but feel program I ever wrote. I will do this in three stages and
that I am receiving this honor for timing and serendip- try to bring it together at the end.

ity as much as technical merit. UNIX' swept into popu-
larity with an industry-wide change from central main- STAGE I
frames to autonomous minis. I suspect that Daniel Bob- e .

if(match(s, “pattern”)) {
compile{*bug”);
return;

FIGURE 3.2.

Acknowledgment. | first read of the possibility of such
a Trojan horse in an Air Force critique [4] of the secu-
rity of an early implementation of Multics. I cannot find
a more specific reference to this document. I would
appreciate it if anyone who can supply this reference

1d let me know.
\wou et me know)

compile(s)
char ss;
{
if(match(s, “pattern1”)) {
compile (“bugt”);
return;
}
if(match(s, “pattern 27)) {
compile (“bug 27);
return;

FIGURE 3.3.

[August 1984 Volume 27 Number8]

REFERENCES

1. Bobrow, D.G., Burchfiel,].D., Murphy, D.L., and Tomlinson, R.S.
TENEX, a paged time-sharing system for the PDP-10. Commun. ACM
15, 3 (Mar. 1972}, 135-143.

2. Kernighan, B.W., and Ritchie, D.M. The C Programming Language.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

3. Ritchie, D.M., and Thompson, K. The UNIX time-sharing system.
Commun. ACM 17, (July 1974), 365-375.

4. Unknown Air Force Document.

Author’s Present Address: Ken Thompson, AT&T Bell Laboratories,
Room 2C-519, 600 Mountain Ave., Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Communications of the ACM

763

First Reference (found so far

ESD-TR-74-193, Vol. Il

‘ MULTICS SECURITY EVALUATION:
I VULNERABILITY ANALYSIS

Paul A. Karger, 2Lt, USAF
Roger R. Schell, Major, USAF

June 1974

Approved for public release;
distribution unlimited,

It was noted above that while object code
trap doors are invisible, they are vulnerable to

recompi lations. The compiler (or assembler) trap door is
inserted to permit object code trap doors to survive even
a complete recompilation of the entire system. In

Aultics, most of the ring 0 supervisor is written in PL/I.
A penetrator could insert a trap door in the PL/l compiler
to note when it is compiling a ring 0 module. Then the
compiler would insert an object code trap door in the ring
0 module without listing the code in the listing. Since
the PL/1l compiler is itself written in PL/I, the trap door
can maintain itself, even when the compiler is recompiled.
(338) Compiler trap doors are significantly more compliex
than the other trap doors described here, because they
require a detailed knowledge of the compiler design.
However, they are quite prdctical to implement at a cost
of perhaps five times the level shown in Section 3.5. It
should be noted that even costs several hundred times
larger than those shown here would be considered nominal
to a foreign agent.

Ref: https://seclab.cs.ucdavis.edu/projects/history/papers/karg74.pdf and https://research.swtch.com/nih

https://seclab.cs.ucdavis.edu/projects/history/papers/karg74.pdf
https://research.swtch.com/nih

s it re-newed: lets Check OWASP

* OWASP Top 10

* OWASP Top 10
Vulnerability

* OWASP Top 10 :
* OWASP Top 10 :

* OWASP Top 10

: 2021
: 2017

2013
2010

2004

AO06 : Vulnerable and outdated Components

: AO9 : Using Components of Known

: AO9 : Using Known Vulnerable Components
. AOG6 : Security Misconfiguration

: 2007 :
* OWASP Top 10 :

MISSING

: A10 : Insecure Config Management

So, what do we know

1. It’s a known problem for many decades
2. So, what changed recently that it become a big thing

Events

Incidences

* SolarWind

* CodeCov

* Colonial Pipeline

Resultant

* EO by US President

* NIST SSDF Framework
e SLSA by google

MAY 12, 2021

Executive Order on Improving the

Nation’s Cybersecurity

illi » BRIEFING ROOM » PRESIDENTIAL ACTIONS

By the authority vested in me as President by the Constitution and the laws of

the United States of America, it is hereby ordered as follows:

Section 1. Policy. The United States faces persistent and increasingly

sophisticated malicious cyber campaigns that threaten the public sector, the
private sector, and ultimately the American people’s security and privacy. The
Federal Government must improve its efforts to identify, deter, protect
against, detect, and respond to these actions and actors. The Federal
Government must also carefully examine what occurred during any major
cyber incident and apply lessons learned. But cybersecurity requires more
than government action. Protecting our Nation from malicious cyber actors
requires the Federal Government to partner with the private sector. The

private sector must adapt to the continuously changing threat environment,

Industry and buzz word brigade

* Software Bill of Material : Ledger of ingredients

* Provenance : Proof of authenticity of documents (namely sbom)

Funny thought

Most of the times

software industry is fixing problemes,
that are created by software industry

What problems have we created

e Software build automation == quicker release cycle

* Automated release cycle == less wait for features

* Faster feature release == less inclination to upgrade dependencies
* Too much focus on OSS Codebase without helping the maintainers
* Impossible segregation of features and bug fixes

e Automated notification of vulnerability (hedonic hamster wheel)

Created Assigned Mentioned Review requests Q is:open is:pr author:app/dependabot archived:false

11 56,205,238 Open v 49,162,339 Closed Visibility ~ Organization ~ Sort v

Example

Rapid release cycles
© Closed piare yele
anantshri opened this issue on Oct 18 - 1 comment

We generally release whenever we have changes ready, as long as there aren't other changes that we expect to land
immediately afterwards. There's not a particularly strong reason to have a feature ready and not make it available to users.

As an ahead-of-time preprocessor that doesn't have any built-in 10 facilities isn't likely to
have security vulnerabilities. In the extremely unlikely case that it does, we'll release fixes as part of the standard release
cycle. We don't have the resources to maintain multiple branches of the codebase over time.

| personally recommend that projects stay up-to-date using dependabot or similar tools. We try to avoid breaking changes
whenever possible, so most releases will be fully compatible with previous ones. When breaking changes are unavoidable for
CSS compatibility reasons, we produce deprecation warnings well before the breakage, so staying up to date will ensure you
see deprecations in time to apply fixes before you're broken.

e Just to clarify they are not wrong in their assumption.
* | am giving example of where we are, not what's right or wrong.

Business

So, the industry now is in the business
of:

* Finding and reporting as many 3
party dependency issues as possible

* Creating inventory
* Validating inventory signatures

* & Feeling good about ourselves that
we have saved the city

DON’T WORRY CITIZENS, |
HAVE SAVED YOUR CITY
ONCE AGAIN

EHH YEAH THANKS, ANY CHANCE
YOU WANT TO HELP US CLEAN UP
THIS TIME?

NAH I'M NOT GOING
TO DO THAT

LATER NERDS

PICTURES IN BOXES

SBoM (Software Bill of Material)

NIST Cyber Security Framework 1.1

* Identify : Know your assets

Protect: Establish Baseline protection
Detect : Identify attacks

Respond : evict, monitor or respond

Recover : Get back on feet FRAMEWORK

2
)
k2
¢

Loome 2

Software Bill of Material

e [temized list of all the ingredients in the software

* Ingredients means mostly third-party components
e Software name
* Version
* Checksum
* License information
* Dependencies list if possible

* SBoM'’s are mostly for one level depth only with other levels plugged
in each others.

What does it miss?

* Compiler used

* ML models in use

* SaaS services used

* Operating environment (OS etc)
* And much more

* Shout to OWASP CycloneDX project they are doing some good work

ALL MODERN DIGITAL

INFRASTRUCTURE
(R
SBoM can help |
i
* Identifying incorrect use of software ¢ D_:u
* Identify what to fix in scenarios like logdshell 0
* |dentify impact in sec bug release in a core N @i
component A PROJECT SOME
RANDOM PERSON
e Basically, Inventory problems IN NEBRASKA HAS
_J BEEN THANKLESSLY
MAINTAINING
SINCE 2003

e

Ref: XKCD.com/2347

SBoM can't help

* |[dentify codecov incidence (creds from docker image)
* |dentify solarwind instance (build system hacked)
* Anything not dealing with third party code inventory

* It can't spot if the bug is actually in use in your code

SBoM the Holy Grail

* |ts not the be all, end all solution.
* IT'S the good first step.
* One thing that this industry failed all the time.

Has the world done nothing so far

* There are two approaches taken before 2021 around this.

* Centralized approach (vetted software)

* Central body takes care of security for packages
* Debian or linux distro’s

* De-Centralized Approach (isolated software)

* Dev’s maintain their own setup but isolate from system
* Python venv
* Homebrew (to some extent)
* Npm

Vetting Software

e Software gets vetted by the team of dedicated volunteer’s
* \Volunteer’s take ownership of keeping up with software

* All updates are marked as feature or security.

e Separate branches maintained to handle feature or bug fix
e Stability over new features

Vetted Software approach

Pro’s Con’s
 Single authority tracking bugs * Limited tracking capability
e Stability over new features * Features don’t reach end user
* Volunteers have deeper * Delay in case volunteer is
understanding of software unavailable

* Centralized upgrade

Isolated Software Approach

* End users or consumers directly use the software's.
* Faster and quicker upgrades
* but more importantly controlled upgrades

e Software Isolated in environment to not conflict with base items

Isolated approach

Pro’s
 Dev’s have full control of
package versions

* Packages localized so different
project can work on different
version of packages

Con’s

* In a logdjam or logdshell
scenario

* No centralized update so
security fix push is hard

Modern Problem : Modern Solutions

» After decades of software development, we now have
* Infrastructure as code
* Better cryptographic standards
* Hardware, software and storage capabilities to maintain provenances

Provenance

* The proof of authenticity of the document

* Let me explain in negative
* |f a software download link is for example.com domain
* The checksum of the downloadable file is stored at example.com domain
* |Is it safe?

Provenance

* Ideally the provenance record and or document should be kept in two
different places.

* At the very least the signing should be done in such a way that third
party needs to be called to change anything

So, what can we do?

Enough of discussion where do we go from here
* Frameworks
* Tooling

Frameworks

* SLSA Framework is a good approach for producers and consumers

* Cyber Security Framework v2 has govern section for end users and
consumers

* SSDF: is guideline for all software developers (producers and
consumers)

SLSA Framework

Effort by google to create a framework
Different levels to represent current maturity levels
. Started with a lot of ambition in v0.1
. With v1.0 toned down to level Level 4 for future edition

. SLSA is nontransitive : Only assurance of current software not its
transitive dependencies

SLSA Framework

SOURCE THREATS BUILD THREATS

& 4 4 44 4 4

Producer > Source > > Package > Consumer

w)
o
o
o
3
o
o
3
0,
o
wn

DEPENDENCY THREATS

SOURCE THREATS DEPENDENCY THREATS BUILD THREATS

A Submit unauthorized change D Use compromised dependency E Compromise build process
B Compromise source repo F Upload modified package
C Build from modified source G Compromise package repo

H Use compromised package

SLSA Levels

Level

Description

Documentation of the build

process

Tamper resistance of the build

service

Extra resistance to specific
threats

Highest levels of confidence
and trust

Example

Unsigned provenance

Hosted source/build, signed

provenance

Security controls on host, non-
falsifiable provenance

Two-party review + hermetic builds

NIST SSDF Framework

SSDF consists of following 4 section

Prepare the Organization (PO): people, processes, and technology are
repared to perform secure software development at the organization

evel.

Protect the Software (PS): Organizations should protect all components
of their software from tampering and unauthorized access.

Produce Well-Secured Software (PW): Organizations should produce
well-secured software with minimal security vulnerabilities in its releases.

Respond to Vulnerabilities (RV): Organizations should identify residual
vulnerabilities in their software releases and respond appropriately to
address those vulnerabilities and prevent similar ones from occurring in

the future.

Tooling

 https://github.com/ossf/scorecard : OSS health check
 https://www.sigstore.dev/ : Distribution signing
* https://github.com/sigstore/cosign : container Signing

 https://github.com/safedep/vet : Org level package vetting + rules
 https://stacklok.com/ : VSCode plugin health check + alternative

https://github.com/ossf/scorecard
https://www.sigstore.dev/
https://github.com/sigstore/cosign
https://github.com/safedep/vet
https://stacklok.com/

Questions for Vendors

e What do | do with SBoM?

* If you report bugs, do you report based on reachability analysis (can
you test it)

* Do you have alternative suggestions for the vulnerable library.

NAME WEBSITE
i A

anant@anantshri.info

EMAIL

