
Beyond the Code / SBOM
Supply Chain Security

Anant Shrivastava

● Chief researcher @ Cyfinoid Research
● 15+ yrs of corporate exposure
● Speaker / Trainer: BlackHat, c0c0n, nullcon, RootConf, RuxCon
● Project Lead:

○ Code Vigilant (Code Review Project)
○ Hacking Archives of India,

○ TamerPlatform (Android Security)

● (@anantshri on social platforms) https://anantshri.info

https://anantshri.info/

Supply chain

It’s a chain like any other chain

Producers
(3rd Party Lib

Maker)

Consumers
(software

developers)

Infrastructure Provider End User
Customers

Store
Store

Download

Download
/ Use
Software

Access 3rd party

components created

Software Supply chain

Development
Environment

Code
Repository

Dependencies

CI / CD
Pipelines

Container
Environments

Runtime /
Cloud

Environments

What can
go wrong
Quick History Lesson

First Reference (found so far)

Ref: https://seclab.cs.ucdavis.edu/projects/history/papers/karg74.pdf and https://research.swtch.com/nih

https://seclab.cs.ucdavis.edu/projects/history/papers/karg74.pdf
https://research.swtch.com/nih

Is it re-newed: lets Check OWASP

• OWASP Top 10 : 2021 : A06 : Vulnerable and outdated Components
• OWASP Top 10 : 2017 : A09 : Using Components of Known

Vulnerability
• OWASP Top 10 : 2013 : A09 : Using Known Vulnerable Components
• OWASP Top 10 : 2010 : A06 : Security Misconfiguration
• OWASP Top 10 : 2007 : MISSING
• OWASP Top 10 : 2004 : A10 : Insecure Config Management

So, what do we know

1. It’s a known problem for many decades
2. So, what changed recently that it become a big thing

Events
Incidences
• SolarWind
• CodeCov
• Colonial Pipeline

Resultant
• EO by US President
• NIST SSDF Framework
• SLSA by google

Industry and buzz word brigade

• Software Bill of Material : Ledger of ingredients

• Provenance : Proof of authenticity of documents (namely sbom)

Funny thought

Most of the times

software industry is fixing problems,
that are created by software industry

What problems have we created

• Software build automation == quicker release cycle
• Automated release cycle == less wait for features
• Faster feature release == less inclination to upgrade dependencies
• Too much focus on OSS Codebase without helping the maintainers
• Impossible segregation of features and bug fixes
• Automated notification of vulnerability (hedonic hamster wheel)

Example

• Just to clarify they are not wrong in their assumption.
• I am giving example of where we are, not what's right or wrong.

Business

So, the industry now is in the business
of:

• Finding and reporting as many 3rd

party dependency issues as possible
• Creating inventory
• Validating inventory signatures
• & Feeling good about ourselves that

we have saved the city

SBoM (Software Bill of Material)

NIST Cyber Security Framework 1.1
• Identify : Know your assets
• Protect: Establish Baseline protection
• Detect : Identify attacks
• Respond : evict, monitor or respond
• Recover : Get back on feet

Software Bill of Material

• Itemized list of all the ingredients in the software
• Ingredients means mostly third-party components
• Software name
• Version
• Checksum
• License information
• Dependencies list if possible

• SBoM’s are mostly for one level depth only with other levels plugged
in each others.

What does it miss?

• Compiler used
• ML models in use
• SaaS services used
• Operating environment (OS etc)
• And much more

• Shout to OWASP CycloneDX project they are doing some good work

SBoM can help

• Identifying incorrect use of software

• Identify what to fix in scenarios like log4shell

• Identify impact in sec bug release in a core
component

• Basically, Inventory problems

Ref: XKCD.com/2347

SBoM can't help

• Identify codecov incidence (creds from docker image)
• Identify solarwind instance (build system hacked)
• Anything not dealing with third party code inventory
• It can't spot if the bug is actually in use in your code

SBoM the Holy Grail

• Its not the be all, end all solution.
• IT’S the good first step.
• One thing that this industry failed all the time.

Has the world done nothing so far

• There are two approaches taken before 2021 around this.
• Centralized approach (vetted software)
• Central body takes care of security for packages

• Debian or linux distro’s

• De-Centralized Approach (isolated software)
• Dev’s maintain their own setup but isolate from system

• Python venv
• Homebrew (to some extent)
• Npm

Vetting Software

• Software gets vetted by the team of dedicated volunteer’s
• Volunteer’s take ownership of keeping up with software
• All updates are marked as feature or security.
• Separate branches maintained to handle feature or bug fix
• Stability over new features

Vetted Software approach

Pro’s
• Single authority tracking bugs
• Stability over new features
• Volunteers have deeper

understanding of software
• Centralized upgrade

Con’s
• Limited tracking capability
• Features don’t reach end user
• Delay in case volunteer is

unavailable

Isolated Software Approach

• End users or consumers directly use the software's.
• Faster and quicker upgrades
• but more importantly controlled upgrades
• Software Isolated in environment to not conflict with base items

Isolated approach

Pro’s
• Dev’s have full control of

package versions
• Packages localized so different

project can work on different
version of packages

Con’s
• In a log4jam or log4shell

scenario
• No centralized update so

security fix push is hard

Modern Problem : Modern Solutions

• After decades of software development, we now have
• Infrastructure as code
• Better cryptographic standards
• Hardware, software and storage capabilities to maintain provenances

Provenance

• The proof of authenticity of the document
• Let me explain in negative
• If a software download link is for example.com domain
• The checksum of the downloadable file is stored at example.com domain
• Is it safe?

Provenance

• Ideally the provenance record and or document should be kept in two
different places.
• At the very least the signing should be done in such a way that third

party needs to be called to change anything

So, what can we do?

Enough of discussion where do we go from here
• Frameworks
• Tooling

Frameworks

• SLSA Framework is a good approach for producers and consumers
• Cyber Security Framework v2 has govern section for end users and

consumers
• SSDF: is guideline for all software developers (producers and

consumers)

SLSA Framework

• Effort by google to create a framework
• Different levels to represent current maturity levels
• Started with a lot of ambition in v0.1
• With v1.0 toned down to level Level 4 for future edition

• SLSA is nontransitive : Only assurance of current software not its
transitive dependencies

SLSA Framework

SLSA Levels

NIST SSDF Framework

SSDF consists of following 4 section
• Prepare the Organization (PO): people, processes, and technology are

prepared to perform secure software development at the organization
level.

• Protect the Software (PS): Organizations should protect all components
of their software from tampering and unauthorized access.

• Produce Well-Secured Software (PW): Organizations should produce
well-secured software with minimal security vulnerabilities in its releases.

• Respond to Vulnerabilities (RV): Organizations should identify residual
vulnerabilities in their software releases and respond appropriately to
address those vulnerabilities and prevent similar ones from occurring in
the future.

Tooling

• https://github.com/ossf/scorecard : OSS health check
• https://www.sigstore.dev/ : Distribution signing
• https://github.com/sigstore/cosign : container Signing

• https://github.com/safedep/vet : Org level package vetting + rules
• https://stacklok.com/ : VSCode plugin health check + alternative

https://github.com/ossf/scorecard
https://www.sigstore.dev/
https://github.com/sigstore/cosign
https://github.com/safedep/vet
https://stacklok.com/

Questions for Vendors

• What do I do with SBoM?
• If you report bugs, do you report based on reachability analysis (can

you test it)
• Do you have alternative suggestions for the vulnerable library.

