
Implementing GitHub’s private
security issue reporting
FOSS Backstage
Berlin, 10-11 March 2025

@RCheesley

@RCheesley

Ruth Cheesley (she/her)

Mautic Project Lead &
Co-Founder, Women of Open
Source community
ruth.cheesley@mau.c.org

speaking.ruthcheesley.co.uk for slides, recording,
links and resources

mailto:ruth.cheesley@mautic.org

Centralising the process of
working on security issues.

We used this system to:

• Receive private security reports from
researchers

• Centralise all communication between
researcher, security team and marketing team
on fixing and disclosure

• Pay micro bounties from their $100 per project
pot to researchers and developers

Our security reporting process at that time:

The tool did the majority of the secure communication, prioritisation, and organisation of
our incoming security issue reports - in effect it was our ‘issue queue’ for security issues

18th October, 2023: Our security
reporting tool closes to non-AI/ML

Rather unexpected news!

• 6 weeks to find a new system for our security
issue collaboration

• Needed to transfer all our publicised security
issues too, as we wouldn’t be able to make any
edits after that date

• Opportunity to revisit what our security team -
and our wider ecosystem - actually needed from
our security reporting workflows

We had some frustrations with our
existing processes, though!

• Couldn’t easily collaborate on fixes directly in
the code (e.g. with PRs) with the researchers

• Very minimal information provided in reports
about the vulnerability

• Juggling 3 systems - Jira, Huntr and GitHub

• Multi-version fixes were a real pain to manage
and release - lots of manual work!

• There was no central list of security advisories
that had previously been released

Possible solution: GitHub Security Advisories?

A new feature: allowing the public to securely and privately report vulnerabilities with a
repository directly, as a draft security advisory for the team to review.

Creates a triage backlog for the team to review.

Allows reviewing and triaging, accepting or rejecting the report based on whether it meets the
policies of the project. We could also generate our own advisories directly.

Users create a draft advisory to
report issues.

• Requests a minimum dataset from the reporter,
and associates them as the reporter for
crediting

• Secure, private place for collaboration with
familiar workflows and team-based permissions

• Allows the requesting of a CVE via GitHub, or
assigning an existing CVE ID

• Comments in the advisory are never made
public - only the content of the advisory itself

Maintainers can decide whether to accept the
reported advisory, or close it.

Can it be reproduced? Is it in line with our security policy?

Collaborate on a private fork with access controlled via the
security advisory.

Enables any contributor to be given access to this fork via the advisory, so that they can work
on/review the proposed fixes.

Exact same process as making a PR in your main repository,
but done privately.

Collaborators clone the private fork, create a branch, and PR their changes as they normally
would, which then shows in the advisory.

Merge all PRs relating to the advisory with a single click!

PRs on advisories are merged all at once, by clicking one button - this merges
the commits directly to the branch in your main repository.

Single squashed commit shows in your commit history.

Once the advisory is published (when you’ve released the fix) the commits link back to the
original advisory, closing the loop for people checking the commit history.

Ensure that everyone involved in the security issue is credited on
the advisory.

It takes a village … with the GitHub Advisories you can recognise that by
crediting everybody involved, even tools and sponsors.

Dependabot alerts automatically inform repositories which
have your project as a dependency.

A PR is provided to bump the version to the patched release, alerts show on the
advisory itself in a separate tab.

https://mau.tc/github-advisories

Our current reporting process:

Users now report security issues as a draft advisory, streamlining the process for them and
for our security team. We maintain Jira as a private space for the team to collaborate.

With GitHub Advisories we can
now …

• Have a centralised location for all things security

• Invite contributors to work on fixes themselves,
rather than have to do all the work ourselves

• Ensure that reports contain the minimum set of
information required for CVE submission

• Simplify the merging of security fixes affecting
multiple branches with a ‘one click merge’

GitHub Advisories solved 95% of
our pain points, except …

• You can’t (currently) run your GitHub Actions on a
private fork in GitHub

• Merging multiple advisories in one release is still very
time consuming due to the need to run automated
tests after each is merged

• You can’t auto-assign a team to access every new
advisory, only admins get access by default

• Requesting/updating CVEs is manual for CNAs

• You can’t PR to a different repo (e.g. an extended long
term support private repo) from an advisory, only the
main public repo - still some manual git-fu needed.

@RCheesley

Ruth Cheesley (she/her)

What questions can I answer?

ruth.cheesley@mau.c.org

speaking.ruthcheesley.co.uk for slides, recording,
links and resources

mailto:ruth.cheesley@mautic.org

