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These slides and links

incremental
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Why this talk?

Terminology / confusion / doubt / opportunity



Jamstack
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JavaScript / APIs / Markup

( but Jamstack means more than what it stands for)
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Jamstack

A way of thinking about how to build for the
web. The Ul is compiled, the frontend is
decoupled, and data is pulled in as needed.
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Decoupling

% netlify | @philhawksworth



Compiling

% netlify | @philhawksworth



Pre-generating
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It used to be so simple

ASK FOR STUFF
= —

GET STUFF
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Time and context
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Decoupling
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Front-end code is
no longer limited to
being a product of
a back-end system
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Capable of being
served directly
from a CDN
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Offloading hosting
complexity as a
solved problem
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Pre-generation
of a site

-+

The workflows and
automation that
unlocks
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" hyGE BENEFT

Deploys are
immutable and atomic
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Live

Deploy 88

Deploy 87

DI=Tol[0)AS]
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Deploy 89
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Zero burden on the
developers for
caching logic




Caching is one of the
easliest things In
computer science

— Nobody ever.
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Confidence & certainty
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WHAT ABOU L

User generated content?




WHAT ABOUZS

Sites with huge
numbers of pages?




Has Jamstack
reached its celling?

WHAT ABOUL WrAT ABOUT

Sites with huge User generated
numbers of pages? content?




Incremental builds
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@ PhilHawksworth

Director of Developer Experience, Netlify



findthat.at/jamstack/book



interesting



These slides and links

incremental
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Let’s talk

1 2 3

Approaches to Understanding the A practical example of
delivering benefits and the a first step to
incremental builds sacrifices incremental builds




Approaches to

delivering
incremental builds
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ApPROACHES

ISR / DPR / BYO

Incremental Distributed Bring
Static Persistent Your
Regeneration Rendering Own
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Incremental

Static

Regeneration
(ISR)
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Added to Next.js by Vercel
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Incremental Static Regeneration
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When to render?
Specifying the fallback

fallback: false fallback: true fallback: blocking
If the page was not Serve a stale page or Generate a page on-
generated in the build, holding page but update demand and cache it for
request will 404 the cache for future future
requests
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An excellent
enhancement to
Next.js

Managing caching
behaviours needs
careful handling




EARL g

Zero burden on the
developers for

caching logic
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Distributed
Persistent

Rendering
(DPR)




(Builds with a long tail)
dpr
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Code

Build l

Deploy number 75
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Code

Build l l On demand

Deploy humber 75
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Code

Build l l On demand

Deploy number 76
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A serverless function

const hand{ler = asaync event = {

// return a view

}s

)
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A serverless function

const { butider }

require(“@netlify/functions");
const hand{ler = asaync event = {

// return a view

}s

exports.handler = butfider(handler);
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Help to refine this pattern
dpr/rfc
dpr/csstricks
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Bring
Your
Own

What are the underlying primitives you need?
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Use with any generator
or framework
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A site without complex
interdependencies
between pages

-+

An tool which can
generate pages from
a set of data

4

The ability to cache
things between builds
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000 Virtual Lollipops for all!

I O I Iy. n et < —- C @& vlolly.net

virtial bollpop

because we all know someone
who deserves some sugar.

thousands of pages of

user content . |
Each new deploy comes w **
from the build cache

And then generates new
pages and adds them to
the build cache

Make a new lolly to send to a friend

Built and hosted with Netlify by Phil Hawksworth

Read about how and why on CSS-Tricks.

)
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Understanding the
benefits and the
sacrifices
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Generating pages on-demand

T BRINGS

The ability to serve far
larger sites

The ability to deliver
previously unknown,
dynamic content
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B

Generating pages on-demand

Can re-introduce the uncertainty
of what lives at a URL

Can violate the contract of
atomic, immutable builds

Can make architectures harder
to reason about
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So consider your
approach carefully

Evaluate the functional and non-functional requirements of your project
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A practical example
of a first step to
iIncremental builds
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findthat.at
findthat.at/thecode

00 findthat.at - A URL shortener o X <+

& —> C & hawksworx.com/blog/find-that-at/

GEVL LIy @ blog speaking about search

January 4th 2019 by Phil Hawksworth

FINDTHALAT - A URL
SHORTENER POWERED
BY NETLIFY

#netlify
#tips

Previously posted:
Keeping Sass simple and speedy on Eleventy

The source code of this site is available on GitHub and is hosted and updated by Netlify
automatically after each code commit

Other than where specified, the content on this site is published under a Creative Commons
Attribution 3.0 licence.

Subscribe to a feed of blog posts on this site.

I've recently started to roll my own short URLs. Using Netlify's
optimised edge redirects via Netlify's redirects API is incredibly efficient
and gives me URLs which I manage on my own domain instead of

farming that out to a third-party provider who might go away.

It is remarkably easy to set up. Here's how.

The redirect API

Netlify allows you to run redirects directly on their ADN by adding a _redirects
file to your project. You can read more details in the documentation, but that file

contains lines of config which look a little like this:

/a-short-path http://some-place-on-the-web




<% netlify

" redirects

/thecode
/incremental
/supasupa
/magic-roundabout
/learn/graphql
/eleventail

/cal
/jamstack/london
/jamstack/growing

@philhawksworth

https
https
https
https
https
https
https
https
https

://github.com/philhawksworth/findtha
. //notil.st/philhawksworth

. //www.netlify.com/blog/2021/06/.
.//en.wikipedia.org/wiki/Magic R«
. //9raphql.org/learn/

./ /www . hawksworx.com/blog/eleven
://calendar.google.com/calendar/

. //app.experiencewelcome.com/eve
.//noti.st/philhawksworth/52h3rm
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000 findthat.at/thecode

& > C & findthat.@t/gr/tRecode

findthat.at/thecode

https://github.com/philhawksworth/findthat.at

findthat.at is a URL shortener made with Netlify Redirects by Phil Hawksworth.
Read how to make your own.




BEHAVIOURS

Render the page
the first time it is requested

Persist the page as part of
the latest deploy

Start fresh after
each new deploy
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we'll need

1 2

A function to build the A way to direct
pages on-demand and requests to our
persist them function



" redirects

/magic-roundabout https://en.wikipedia.org/wiki/Magic |

/learn/graphaql https://graphqgl.org/learn/

/eleventail https://www.hawksworx.com/blog/elevel
/cal https://calendar.google.com/calendar,
/jamstack/london https://app.experiencewelcome.com/eve

/ jamstack/growing https://noti.st/philhawksworth/5Zh3rr

/qr/* /.netlify/functions/show-qr 200
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show-qr.js

const { buifder } require("@netlify/functions");
const @RCode require('qrcode');

const fgetch = require('node-fetch');

const pageTemplate require('../../includes/page. js');
const rootURL "https://findthat.at";

const hand{er = async event = {

// Get the originaf{ short URL (without the qr part of the path)
const path = event.path.spfit("/qr/")[1];
const shortURL = “${rootURL}/${path} ;

// §ollow the redirect to get the destination to dispfay
const destinationURL = await getch(shortURL);

// makRe a QR cade and then return a page dispfaying it
return @RCode.toString(shortURL, {'type':'svg'} )
.then(svg = {

// render the data into the temp{ate
return {
statusCode: 200,
body: pageTemplate({
shortURL : shortURL,
destinationURL : destinationURL .urf,
svg: escape(svg)
1)
}s
1)
.catch(err = {
console.error(err)

})
};

exports.handler = butilder(handler);

)

%> netlify | @philhawksworth



show-qr.js

const handler = asaync event = {

// Get the original short URL (without the qr part of the path)
const path = event.path.split("/qr/")[1];
const shortURL = “${rootURL}/${path};

// §ollow the redirect to get the destination to display
const destinationURL = await fetch(shortURL);

// makRe a QR cade and then return a page displaying it
return QRCode.toString(shortURL, {'type':'svg'} )
.then(avg = {

// render the data into the template
return {
statusCode: 200,
body: pagelemplate({
shortURL : shortURL,
destinationURL : destinationURL .ur?,
Avg: escape(svg)
})
3
})
.catch(err = {
console.error(err)

)
};
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show-qr.js

const { butflder }
const @RCode

const getch

const pagelempfate
const rootURL

require("@netlify/functions");
require('qrcode');
require('node-fetch');
require('../../includes/page. js');
"https://findthat.at";

)
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page.|s

module.exports = (data) = {
return <!DOCTYPE html>

<body>
<header>
<hl><a href=" data.shortURL }"> data.shortURL }</a></hl>
<a class="dest" href=" data.destinationURL }"> data.destinationURL l</a>
</header>
<malin>
<img src='data:image/svg+xml;utf8, data.svg t'>
</main>

5l
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show-qr.js

const { buifder } require("@netlify/functions");
const @RCode require('qrcode');

const fgetch = require('node-fetch');

const pageTemplate require('../../includes/page. js');
const rootURL "https://findthat.at";

const hand{er = async event = {

// Get the originaf{ short URL (without the qr part of the path)
const path = event.path.spfit("/qr/")[1];
const shortURL = “${rootURL}/${path} ;

// §ollow the redirect to get the destination to dispfay
const destinationURL = await getch(shortURL);

// makRe a QR cade and then return a page dispfaying it
return @RCode.toString(shortURL, {'type':'svg'} )
.then(svg = {

// render the data into the temp{ate
return {
statusCode: 200,
body: pageTemplate({
shortURL : shortURL,
destinationURL : destinationURL .urf,
svg: escape(svg)
1)
}s
1)
.catch(err = {
console.error(err)

})
};

exports.handler = butilder(handler);

)
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show-qr.Js

const { builder } = require("@netlify/functions");

const handfler = async event = {
}s

exports.handler = butf{der(handler);

)

%> netlify | @philhawksworth



These slides and links

incremental
qr/incremental
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findthat.at/qr/incremental

00 @ findthat.at/incremental

&< —-> C & findthat.at/gr/incremental

findthat.at/incremental

https://noti.st/philhawksworth

findthat.at is a URL shortener made with Netlify Redirects by Phil Hawksworth.
Read how to make your own.




Wrapping up

)
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Incremental builds are
possible right now

Sites built with any
framework or generator
can be enhanced

Embracing the law of
least power helps protect
an architecture you can
reason about
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The benefits of a
Jamstack architecture
are worth protecting

Examine your use cases

Please don’'t make me
have to understand and
manage end-to-end
caching



Jamstack Community Survey 2021
findthat.at/jamstack/survey

Jamstack Conf - Speak!

jamstackconf.com/cfp



Thanks

@philhawksworth

findthat.at/incremental



