Demystifying Incremental
Static Regeneration

And raising the Jamstack ceiling

Phil Hawksworth, Netlify

% netlify | @philhawksworth

These slides and links

incremental

% netlify | @philhawksworth

Why this talk?

Terminology / confusion / doubt / opportunity

Jamstack

% netlify | @philhawksworth

JavaScript / APIs / Markup

(but Jamstack means more than what it stands for)

% netlify | @philhawksworth

Jamstack

A way of thinking about how to build for the
web. The Ul is compiled, the frontend is
decoupled, and data is pulled in as needed.

% netlify | @philhawksworth

Decoupling

% netlify | @philhawksworth

Compiling

% netlify | @philhawksworth

Pre-generating

% netlify | @philhawksworth

It used to be so simple

ASK FOR STUFF
= —

GET STUFF

% netlify | @philhawksworth

Time and context

— +
' + (www|

LOAD BALANCERS WEB SERVERS DATABASES

TRADITIONAL STACK

O

I\I

JAMSTACK

g o ——> m - « 3

ASSETS ON CDN BUILD CODE & CONTENT

AHEAD OF TIME

% netlify | @philhawksworth

Decoupling

% netlify | @philhawksworth

Front-end code is
no longer limited to
being a product of
a back-end system

% netlify | @philhawksworth

Capable of being
served directly
from a CDN

% netlify | @philhawksworth

Offloading hosting
complexity as a
solved problem

% netlify | @philhawksworth

Pre-generation
of a site

-+

The workflows and
automation that
unlocks

% netlify | @philhawksworth

" hyGE BENEFT

Deploys are
immutable and atomic

% netlify | @philhawksworth

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Deploy 89

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Live

Deploy 89

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Deploy 89

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Deploy 89

Deploy 88

Deploy 87
Live

DI=Tol[0)AS]

% netlify | @philhawksworth
Deploy 86

Zero burden on the
developers for
caching logic

Caching is one of the
easliest things In
computer science

— Nobody ever.

%> netlify | @philhawksworth

Confidence & certainty

% netlify | @philhawksworth

g
% ne |
S i ‘ @philhawksworth

WHAT ABOU L

User generated content?

WHAT ABOUZS

Sites with huge
numbers of pages?

Has Jamstack
reached its celling?

WHAT ABOUL WrAT ABOUT

Sites with huge User generated
numbers of pages? content?

Incremental builds

% netlify | @philhawksworth

@ PhilHawksworth

Director of Developer Experience, Netlify

findthat.at/jamstack/book

interesting

These slides and links

incremental

% netlify | @philhawksworth

Let’s talk

1 2 3

Approaches to Understanding the A practical example of
delivering benefits and the a first step to
incremental builds sacrifices incremental builds

Approaches to

delivering
incremental builds

% netlify | @philhawksworth

ApPROACHES

ISR / DPR / BYO

Incremental Distributed Bring
Static Persistent Your
Regeneration Rendering Own

% netlify | @philhawksworth

Incremental

Static

Regeneration
(ISR)

% netlify | @philhawksworth

Added to Next.js by Vercel

% netlify | @philhawksworth

Incremental Static Regeneration

revalidate: 60

Os 60s

N\
I
I
I
I
I
I
I
I

fmmmm e m =)

N\ N\
| I
I I
I I
I I
I I
I I
I I
I |

(-___-___._-

I |
I I
I I
I |
I I
I I
I I
I |
v v

S0 BRB B B

{rm e e e e = -

Generate Page Serve from Cache Return Stale Page Serve from Cache
o >
-] =
Generate New Page Update Cache

NEXT.

%':éﬁ‘ netlify @philhawksworth Source: https://www.smashingmagazine.com/2021/04/incremental-static-regeneration-nextjs

When to render?
Specifying the fallback

fallback: false fallback: true fallback: blocking
If the page was not Serve a stale page or Generate a page on-
generated in the build, holding page but update demand and cache it for
request will 404 the cache for future future
requests

% netlify | @philhawksworth

% netlify | @philhawksworth

An excellent
enhancement to
Next.js

Managing caching
behaviours needs
careful handling

EARL g

Zero burden on the
developers for

caching logic

<% netlify | @philhawksworth

% netlify | @philhawksworth

Distributed
Persistent

Rendering
(DPR)

(Builds with a long tail)
dpr

% netlify | @philhawksworth

% netlify | @philhawksworth

Code

Build l

Deploy number 75

% netlify | @philhawksworth

Code

Build l

Deploy number 75

% netlify | @philhawksworth

Code

Build l l On demand

Deploy humber 75

% netlify | @philhawksworth

Code

Build l l On demand

Deploy humber 75

% netlify | @philhawksworth

Code

Build l

Deploy number 76

% netlify | @philhawksworth

Code

Build l

Deploy number 76

% netlify | @philhawksworth

Code

Build l l On demand

Deploy number 76

% netlify | @philhawksworth

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Deploy 89

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Live

Deploy 89

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

Deploy 89

Live

Deploy 88

Deploy 87

DI=Tol[0)AS]

% netlify | @philhawksworth

Deploy 86

A serverless function

const hand{ler = asaync event = {

// return a view

}s

)

%> netlify | @philhawksworth

A serverless function

const { butider }

require(“@netlify/functions");
const hand{ler = asaync event = {

// return a view

}s

exports.handler = butfider(handler);

% netlify | @philhawksworth

Help to refine this pattern
dpr/rfc
dpr/csstricks

% netlify | @philhawksworth

Bring
Your
Own

What are the underlying primitives you need?

% netlify | @philhawksworth

Use with any generator
or framework

% netlify | @philhawksworth

A site without complex
interdependencies
between pages

-+

An tool which can
generate pages from
a set of data

4

The ability to cache
things between builds

% netlify | @philhawksworth

000 Virtual Lollipops for all!

I O I Iy. n et < —- C @& vlolly.net

virtial bollpop

because we all know someone
who deserves some sugar.

thousands of pages of

user content . |
Each new deploy comes w **
from the build cache

And then generates new
pages and adds them to
the build cache

Make a new lolly to send to a friend

Built and hosted with Netlify by Phil Hawksworth

Read about how and why on CSS-Tricks.

)

<% netlify | @philhawksworth

Understanding the
benefits and the
sacrifices

% netlify | @philhawksworth

Generating pages on-demand

T BRINGS

The ability to serve far
larger sites

The ability to deliver
previously unknown,
dynamic content

% netlify | @philhawksworth

B

Generating pages on-demand

Can re-introduce the uncertainty
of what lives at a URL

Can violate the contract of
atomic, immutable builds

Can make architectures harder
to reason about

% netlify | @philhawksworth

So consider your
approach carefully

Evaluate the functional and non-functional requirements of your project

% netlify | @philhawksworth

A practical example
of a first step to
iIncremental builds

% netlify | @philhawksworth

findthat.at
findthat.at/thecode

00 findthat.at - A URL shortener o X <+

& —> C & hawksworx.com/blog/find-that-at/

GEVL LIy @ blog speaking about search

January 4th 2019 by Phil Hawksworth

FINDTHALAT - A URL
SHORTENER POWERED
BY NETLIFY

#netlify
#tips

Previously posted:
Keeping Sass simple and speedy on Eleventy

The source code of this site is available on GitHub and is hosted and updated by Netlify
automatically after each code commit

Other than where specified, the content on this site is published under a Creative Commons
Attribution 3.0 licence.

Subscribe to a feed of blog posts on this site.

I've recently started to roll my own short URLs. Using Netlify's
optimised edge redirects via Netlify's redirects API is incredibly efficient
and gives me URLs which I manage on my own domain instead of

farming that out to a third-party provider who might go away.

It is remarkably easy to set up. Here's how.

The redirect API

Netlify allows you to run redirects directly on their ADN by adding a _redirects
file to your project. You can read more details in the documentation, but that file

contains lines of config which look a little like this:

/a-short-path http://some-place-on-the-web

<% netlify

" redirects

/thecode
/incremental
/supasupa
/magic-roundabout
/learn/graphql
/eleventail

/cal
/jamstack/london
/jamstack/growing

@philhawksworth

https
https
https
https
https
https
https
https
https

://github.com/philhawksworth/findtha
. //notil.st/philhawksworth

. //www.netlify.com/blog/2021/06/.
.//en.wikipedia.org/wiki/Magic R«
. //9raphql.org/learn/

./ /www . hawksworx.com/blog/eleven
://calendar.google.com/calendar/

. //app.experiencewelcome.com/eve
.//noti.st/philhawksworth/52h3rm

900 findthat.at/thecode

=0

< —> (C @& findthat. //t/qr/t ecode

000 findthat.at/thecode

& > C & findthat.@t/gr/tRecode

findthat.at/thecode

https://github.com/philhawksworth/findthat.at

findthat.at is a URL shortener made with Netlify Redirects by Phil Hawksworth.
Read how to make your own.

BEHAVIOURS

Render the page
the first time it is requested

Persist the page as part of
the latest deploy

Start fresh after
each new deploy

% netlify | @philhawksworth

we'll need

1 2

A function to build the A way to direct
pages on-demand and requests to our
persist them function

" redirects

/magic-roundabout https://en.wikipedia.org/wiki/Magic |

/learn/graphaql https://graphqgl.org/learn/

/eleventail https://www.hawksworx.com/blog/elevel
/cal https://calendar.google.com/calendar,
/jamstack/london https://app.experiencewelcome.com/eve

/ jamstack/growing https://noti.st/philhawksworth/5Zh3rr

/qr/* /.netlify/functions/show-qr 200

% netlify | @philhawksworth

show-qr.js

const { buifder } require("@netlify/functions");
const @RCode require('qrcode');

const fgetch = require('node-fetch');

const pageTemplate require('../../includes/page. js');
const rootURL "https://findthat.at";

const hand{er = async event = {

// Get the originaf{ short URL (without the qr part of the path)
const path = event.path.spfit("/qr/")[1];
const shortURL = “${rootURL}/${path} ;

// §ollow the redirect to get the destination to dispfay
const destinationURL = await getch(shortURL);

// makRe a QR cade and then return a page dispfaying it
return @RCode.toString(shortURL, {'type':'svg'})
.then(svg = {

// render the data into the temp{ate
return {
statusCode: 200,
body: pageTemplate({
shortURL : shortURL,
destinationURL : destinationURL .urf,
svg: escape(svg)
1)
}s
1)
.catch(err = {
console.error(err)

})
};

exports.handler = butilder(handler);

)

%> netlify | @philhawksworth

show-qr.js

const handler = asaync event = {

// Get the original short URL (without the qr part of the path)
const path = event.path.split("/qr/")[1];
const shortURL = “${rootURL}/${path};

// §ollow the redirect to get the destination to display
const destinationURL = await fetch(shortURL);

// makRe a QR cade and then return a page displaying it
return QRCode.toString(shortURL, {'type':'svg'})
.then(avg = {

// render the data into the template
return {
statusCode: 200,
body: pagelemplate({
shortURL : shortURL,
destinationURL : destinationURL .ur?,
Avg: escape(svg)
})
3
})
.catch(err = {
console.error(err)

)
};

% netlify | @philhawksworth

show-qr.js

const { butflder }
const @RCode

const getch

const pagelempfate
const rootURL

require("@netlify/functions");
require('qrcode');
require('node-fetch');
require('../../includes/page. js');
"https://findthat.at";

)

%> netlify | @philhawksworth

page.|s

module.exports = (data) = {
return <!DOCTYPE html>

<body>
<header>
<hl> data.shortURL }</hl>
 data.destinationURL l
</header>
<malin>

</main>

5l

% netlify | @philhawksworth

show-qr.js

const { buifder } require("@netlify/functions");
const @RCode require('qrcode');

const fgetch = require('node-fetch');

const pageTemplate require('../../includes/page. js');
const rootURL "https://findthat.at";

const hand{er = async event = {

// Get the originaf{ short URL (without the qr part of the path)
const path = event.path.spfit("/qr/")[1];
const shortURL = “${rootURL}/${path} ;

// §ollow the redirect to get the destination to dispfay
const destinationURL = await getch(shortURL);

// makRe a QR cade and then return a page dispfaying it
return @RCode.toString(shortURL, {'type':'svg'})
.then(svg = {

// render the data into the temp{ate
return {
statusCode: 200,
body: pageTemplate({
shortURL : shortURL,
destinationURL : destinationURL .urf,
svg: escape(svg)
1)
}s
1)
.catch(err = {
console.error(err)

})
};

exports.handler = butilder(handler);

)

%> netlify | @philhawksworth

show-qr.Js

const { builder } = require("@netlify/functions");

const handfler = async event = {
}s

exports.handler = butf{der(handler);

)

%> netlify | @philhawksworth

These slides and links

incremental
qr/incremental

% netlify | @philhawksworth

findthat.at/qr/incremental

00 @ findthat.at/incremental

&< —-> C & findthat.at/gr/incremental

findthat.at/incremental

https://noti.st/philhawksworth

findthat.at is a URL shortener made with Netlify Redirects by Phil Hawksworth.
Read how to make your own.

Wrapping up

)

%> netlify | @philhawksworth

% netlify | @philhawksworth

R\E\\I\\:—\\"B‘:‘R

Incremental builds are
possible right now

Sites built with any
framework or generator
can be enhanced

Embracing the law of
least power helps protect
an architecture you can
reason about

% netlify | @philhawksworth

R\E\\I\\:—\\"B‘:‘R

The benefits of a
Jamstack architecture
are worth protecting

Examine your use cases

Please don’'t make me
have to understand and
manage end-to-end
caching

Jamstack Community Survey 2021
findthat.at/jamstack/survey

Jamstack Conf - Speak!

jamstackconf.com/cfp

Thanks

@philhawksworth

findthat.at/incremental

