
Design, develop and manage
a catalog of Web Components

Horacio Gonzalez - @LostInBrittany

April, 20-21-22, 2021

Who are we?
Introducing myself and

introducing OVH OVHcloud

Who are we?
Introducing myself and

introducing OVH OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Flutter

Flutter

OVHcloud: A global leader

30 Data Centers
in 12 locations

34 Points of Presence
on a 20 TBPS Bandwidth Network

2200 Employees
worldwide

115K Private Cloud
VMS running

380K Physical Servers
running in our data centers

1 Million+ Servers
produced since 1999

300K Public Cloud
instances running

1.5 Million Customers
across 132 countries

1.5 Billion Euros Invested
since 2016

20 Years in Business
Disrupting since 1999

P.U.E. 1.09
Energy efficiency indicator

3.8 Million Websites
hosting

Web Cloud & Telcom

Private Cloud

Public Cloud

Storage

Network & Security

The 3 minutes context
What the heck are web component?

Web Components

Web standard W3C

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

Web Components

Create your own HTML tags
Encapsulating look and behavior

Web Components

Fully interoperable
With other web components, with any framework

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

But in fact, it’s just an element…

● Attributes

● Properties

● Methods

● Events

So, what are Design Systems?
And why should I look at them?

A talk for devs by a dev

I am not a designer, neither I play one on TV...

The same or different?

A document listing the styles, patterns, practices,
and principles of a brand design standards

Style Guides

Style guides define the application’s look and feel

Style Guides

Style Guide Example: Uber

https://brand.uber.com/

https://brand.uber.com/

Style Guide Example: Medium

 https://www.behance.net/gallery/7226653/Medium-Brand-Development

Style Guides alone are ambiguous

Interpretation needed to adapt
the preconisation to the use case

Component Catalogs

A component catalog is a repository of components,
with one or several implementations, code examples

and technical documentation

Component Catalog example: Bootstrap

https://getbootstrap.com/

Component Catalog Example: ING's Lion

https://lion-web-components.netlify.app/

Catalogs alone create inconsistency

Like using the same LEGO bricks
to create very different objects

A Design System is like a common visual
language for product teams

Design Systems

A Design System is a set of design standards,
documentations, and principles, alongside with the

toolkit (UI patterns and code components)
to achieve those standards

Design systems

Design systems

Example: Carbon Design System

https://www.carbondesignsystem.com/

Example: Firefox's Photon Design System

https://design.firefox.com/photon/

Example: Material Design

https://material.io/

The component catalog
The poor relative of the Design System family

Let's choose a simple example

Bootstrap based component catalogs

A long time ago

Components defined in HTML, CSS and some jQuery

Then it was AngularJS time...

And new reference implementations were needed

But you know the sad story...

All UI Bootstrap based catalogs woke up with
an obsolete implementation

Worry no more, let's do Angular!

ng-bootstrap to the rescue

But times had changed...

In 2017 Angular is only one more in the clique

 React is the new Big ThingTM

So let's build React Bootstrap...

Wait, what about Vue?

We also need BootstrapVue

OK, I think you see my point...

Most Design System do a choice

Either they choose a canonical implementation
or they ship and maintain several implementations

Both choices are problematic

Shipping only one implementation:
Web dev ecosystem changes quickly and

almost nobody keeps the same framework for years...

Both choices are problematic

Shipping several implementations:
You need to maintain all the implementation…

and you still miss some others

Incomplete catalogs are problematic

People will need to recode the components
in their chosen framework…

Coherence is not guaranteed!!!

Example: Carbon Design System

Web Components & Design Systems
A match made in heaven

Compatibility is on Web Components side

Web Components everywhere, baby!

They are truly everywhere 🚀

🚀 Even in the spaaaaaaaace 🚀

Do you remember AngularJS?

And all the code put in the trash bin
when Angular arrived...

The pain of switching frameworks?

Rewriting once again your code...

The impossibility of sharing UI code?

Between apps written with different frameworks

Web Components change that

In a clean and standard way

They are the interoperable alternative

Any framework… or no framework at all

You can have a single implementation

And it simply works everywhere

When you need interoperability

Nothing beats the standard

But how to do it?
Designing, developing and managing

a catalog of Web Components

Learning from the best

https://lion-web-components.netlify.app/

Learning from the best

https://github.com/CleverCloud/clever-components

What kind of components?
From little atomic blocs to big smart components,

and everything in between

A matter of size and complexity

What kind(s) of components you want to build

Build from the bottom and go up

 Eat your own dog food

And how to choose the atoms?

Flexibility and configurability are key

And how to choose the atoms?

Encode often used patterns

And what about the molecules?

Capitalize on your atoms
Keep the flexibility and configurability

Big smart business components

Encoding your business logic

Internal or external customers?

Who are your target users?

Internal customers need off-the-shelf components

A well defined and coherent look-and-feel

External customers need to be able to tweak

Theming and customizing components

How to organize the catalog
Packages, imports and pragmatism

A single repository

Single source of truth for the catalog

Two schools of thought

A packet per component or a global one

Two schools of thought

Individual versioning vs global one

Lots of web components libraries

For different needs and sensibilities

LitElement

SkateJS

Which ones to use?

All are good, but these are popular favorites

Driving-up adoption
Making devs use your components

Think who are your target users

Users of any framework current or future...

They aren't used to your library

And they shouldn't need to be

Go the extra mile to drive up adoption

So they don't need to do it

Make it easy to use

As easy as a HTML tag

Document every composant

How to use, inputs/outputs, examples...

Documentation isn't enough

Storybook make adoption easy

Keeping a coherent writing style

Write down your guidelines

I18n shouldn't be an afterthought

Prepare everything for internationalization

That's all, folks!
Thank you all!

