
Managing Kubernetes
without losing your cool

DDD East Midlands

October 7th 2023

Hi 👋,

I’m Marcus Noble, a platform engineer
at

I’m found around the web as
✨AverageMarcus✨ in most places
and
@Marcus@k8s.social on Mastodon 🐘

6+ years experience running Kubernetes
in production environments.

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

#0 - Pay someone else to deal
with it

#1 - Love your terminal

#1 - Love your terminal

★ Bash? ZSH? Fish? 🤷 - Doesn’t matter as long as you’re
comfortable with it.

★ “rc” files - e.g. .bashrc, .zshrc
These set configuration for each terminal session you open.

★ alias - easily create your own terminal commands

★ Look for “dotfiles” on GitHub - e.g. https://github.com/averagemarcus/dotfiles

https://github.com/averagemarcus/dotfiles

#2 - Learn to love `kubectl`

#2 - Learn to love `kubectl`
★ Add alias k='kubectl' to your

.bashrc / .zshrc / .whateverrc

★ The official docs offer a single
page view of all built in commands:
kubernetes.io/docs/reference/generated/kube
ctl/kubectl-commands

★ kubectl explain is your friend!
Find out what any property of any
Kubernetes resource is for. ➡

k get pods -A

k explain pods.spec.containers
KIND: Pod
VERSION: v1

RESOURCE: containers <[]Object>

DESCRIPTION:
 List of containers belonging to the pod. Containers cannot currently be
 added or removed. There must be at least one container in a Pod. Cannot be
 updated.

 A single application container that you want to run within a pod.

FIELDS:
 args <[]string>
 Arguments to the entrypoint. The docker image's CMD is used if this is not
 provided. Variable references $(VAR_NAME) are expanded using the
 container's environment. If a variable cannot be resolved, the reference in
 the input string will be unchanged. Double $$ are reduced to a single $,
 which allows for escaping the $(VAR_NAME) syntax: i.e. "$$(VAR_NAME)" will
 produce the string literal "$(VAR_NAME)". Escaped references will never be
 expanded, regardless of whether the variable exists or not. Cannot be
 updated.

 command <[]string>
 Entrypoint array. Not executed within a shell. The docker image's
 ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME)

Tip #1 in
action

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

#3 - Multiple kubeconfigs

#3 - Multiple kubeconfigs

★ Quick switch between different Kubernetes contexts (clusters) and
between different namespaces.

★ kubectx and kubens
https://github.com/ahmetb/kubectx

★ kubie
https://github.com/sbstp/kubie

★ kubeswitch
https://github.com/danielfoehrKn/kubeswitch

https://github.com/ahmetb/kubectx
https://github.com/sbstp/kubie
https://github.com/danielfoehrKn/kubeswitch

#4 - Interactive UIs

#4 - k9s

github.com/derailed/k9s

https://github.com/derailed/k9s

#4 - OpenLens

github.com/MuhammedKalkan/OpenLens

https://github.com/MuhammedKalkan/OpenLens

#5 - kubectl plugins

#5 - kubectl plugins

★ Any command in your $PATH that is prefixed
with kubectl- becomes a kubectl plugin

★ Krew - package manager for kubectl plugins
github.com/kubernetes-sigs/krew

★ Install plugins with:
kubectl krew install <PLUGIN NAME>

★ Some of my fave plugins:
○ stern - Multi-pod/container log tailing
○ tree - Show hierarchy of resources based on ownerReferences
○ community-images - Find images still referencing the k8s.gcr.io registry.
○ gs - Giant Swarm’s plugin for working with our managed clusters

$ cat kubectl-hello

#!/bin/bash

echo "Hello, Kube"

$ kubectl hello

Hello, Kube

https://github.com/kubernetes-sigs/krew

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

#6 - Pod Debugging

#6 - Pod Debugging: kshell

alias kshell='kubectl run \
 -it \
 --image bash \
 --restart Never \
 --rm \
 shell'

Launch a temporary pod running a bash shell for cluster debugging

Need more tools? Replace this with alpine or ubuntu

Tip #1 in action, again

#6 - Pod Debugging: kshell

kshell
If you don't see a command prompt, try pressing enter.
bash-5.1# nslookup google.com
Server: 1.1.1.1
Address: 1.1.1.1:53

Non-authoritative answer:
Name: google.com
Address: 142.250.187.206

Launch a temporary pod running a bash shell for cluster debugging

#6 - Pod Debugging: kubectl exec
Debugging an existing, running pod - kubectl exec

Note:
★ Needs a shell environment within the container
★ Limited to what’s available in the container (or what you can pull in from the ‘net)
★ Container needs to be running

kubectl exec my-broken-pod -it -- sh

/app #

#6 - Pod Debugging: kubectl debug

kubectl exec my-broken-pod -it -- sh
error: Internal error occurred: error executing command in
container: failed to exec in container: failed to start exec……

Debugging a running pod - kubectl exec

��

kubectl debug -it --image bash my-broken-pod
Defaulting debug container name to debugger-gprmk.
If you don't see a command prompt, try pressing enter.
bash-5.1#

Debugging a running pod - kubectl debug

��

Requires Kubernetes v1.23+

#6 - Pod Debugging: kubectl debug

kubectl run debug-demo --image=bash -- exit 1

kubectl get pods debug-demo
NAME READY STATUS RESTARTS AGE
debug-demo 0/1 CrashLoopBackOff 2 (20s ago) 44s

kubectl debug -it --image bash debug-demo
Defaulting debug container name to debugger-5mkjj.
If you don't see a command prompt, try pressing enter.
bash-5.1#

Example - investigate a CrashLooping pod

This will prevent us from `kubectl exec` into the pod

#6 - Pod Debugging
When to use what:

kshell kubectl exec kubectl debug

Multiple workloads experiencing network
issues ✅
Workload not running as expected but not
CrashLooping and isn’t a stripped down
image (e.g. not Scratch / Distroless)

✅
Workload not running as expected but not
CrashLooping and has an image based
on Scratch / Distroless or similar

✅
Workload is CrashLooping ✅

#7 - Node Debugging

#7 - Node Debugging: kubectl debug (again)
★ Requires Kubernetes v1.23

Why not SSH? - I prefer to use ephemeral instances with the minimal needed to run Kubernetes, no sshd, no port
22 open etc. but there are times when you just need to check what’s actually going on with the underlying host
machine.

kubectl debug node/ip-10-0-0-1 -it --image alpine
Creating debugging pod node-debugger-ip-10-0-0-1-9wlqp with container debugger on node ip-10-0-0-1.
If you don't see a command prompt, try pressing enter.
/ # ls -l /
total 60
…
drwxr-xr-x 2 root root 4096 Aug 9 08:47 home
drwxr-xr-x 19 root root 4096 Nov 4 08:48 host
drwxr-xr-x 7 root root 4096 Aug 9 08:47 lib
drwxr-xr-x 5 root root 4096 Aug 9 08:47 media
…
/ #

The host node’s root filesystem

#7 - Node Debugging: nsenter alternative
★ For older clusters before Kubernetes v1.23

★ Alternatives:
github.com/AverageMarcus/kube-ssh
github.com/giantswarm/kubectl-enter

★ Note: Underlying host needs a valid shell

kubectl run h0nk --rm -it \
 --image alpine --privileged \
 --overrides '{"spec":{"hostPID": true}}'\
 --command nsenter – \
 --mount=/proc/1/ns/mnt

If you don't see a command prompt, try pressing enter.

This won’t work with Talos, for example,
whereas `kubectl debug` will

https://github.com/AverageMarcus/kube-ssh
https://github.com/giantswarm/kubectl-enter
https://twitter.com/IanColdwater/status/1545065196561080321
https://twitter.com/mauilion/status/1545077582634237954

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

✅

#8 - Webhooks

★ Implement more advanced access control than is possible with RBAC.
[Restricting cluster-admin permissions]

★ Add defaulting logic to Kubernetes resources
★ Enforce company policies such as not using latest as an image tag

or ensuring all workloads have resource requests/limits specified.
★ “Hotfix” for security issues (e.g. injecting env var to prevent Log4Shell

exploit). [Log4Shell Mitigation]

⚠ Be careful using webhooks as it’s easy to introduce cluster-breaking configurations! 😱 [Webhooks Talk]

Tools:
★ Kyverno - Kubernetes native policy management.
★ OPA Gatekeeper - Policy management built on top of Open Policy Agent

Webhooks

https://www.giantswarm.io/blog/restricting-cluster-admin-permissions
https://kyverno.io/policies/other/mitigate_log4shell/mitigate_log4shell/
https://noti.st/averagemarcus/Hw2IXG/the-wonders-and-woes-of-webhooks
https://kyverno.io/
https://open-policy-agent.github.io/gatekeeper/website/docs/

#9 - Kubernetes API

Kubernetes API
Resources:

- kubernetes/client-go - the official Golang module for interacting with
the Kubernetes API

- Kubernetes Provider for Terraform (actually uses the above Go module under the hood)
- kubernetes-client org on GitHub has many official clients in different

languages

Where is this useful?

★ Building our own CLI / desktop tooling (e.g. k9s, Lens).

★ Cluster automation - resources managed by CI, CronJobs, etc.

★ Building our own operators to extend Kubernetes.

https://github.com/kubernetes/client-go
https://registry.terraform.io/providers/hashicorp/kubernetes/latest/docs
https://github.com/kubernetes-client

#10 - CRDs & Operators

Extend Kubernetes’ built-in API and functionality with your own Custom
Resource Definitions (CRDs) and business logic (operators).

CRDs & Operators

Image credits: Container Solutions
https://blog.container-solutions.com/kubernetes-operators-explained

https://blog.container-solutions.com/kubernetes-operators-explained

#10 - CRDs & Operators

Metacontroller
Frameworks

References
● https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
● https://blog.container-solutions.com/kubernetes-operators-explained
● https://operatorhub.io/ - Directory of existing operators

Videos

https://kubebuilder.io/
https://operatorframework.io/
https://kudo.dev/
https://metacontroller.github.io/metacontroller/intro.html
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://blog.container-solutions.com/kubernetes-operators-explained
https://operatorhub.io/
https://www.youtube.com/watch?v=LLVoyXjYlYM
https://www.youtube.com/watch?v=KBTXBUVNF2I
https://www.youtube.com/watch?v=8JFRw9dZU_s

Summary My 10 tips for working with
Kubernetes

#1 → #5
Anyone can start using these today

#6 → #7
Good to know a little old-skool ops
first

#8 → #10
Good have some programming
knowledge

✅

✅

✅

Recap

#1 - Love your terminal

#2 - Learn to love kubectl

#3 - Multiple kubeconfigs

#4 - k9s / OpenLens

#5 - Kubectl plugins

#6 - Pod Debugging

#7 - Node Debugging

#8 - Webhooks

#9 - Kubernetes API

#10 - CRDs & Controllers

Wrap-up Slides and resources available at:

https://go-get.link/dddem23

Thoughts, comments and feedback:

 feedback@marcusnoble.co.uk

 https://k8s.social/@Marcus

Thank you

https://go-get.link/dddem23
mailto:feedback@marcusnoble.co.uk
https://k8s.social/@Marcus

