
Authz as a dev workflow

• Dan phrawzty Maher

• Cerbos

1 @phrawzty // cerbos.dev



About Me

• Open source nerd

• Oldschool sysadmin (devops, sre, etc)

• Really into opsec

2 @phrawzty // cerbos.dev



The Authorization Paradox

• Authorization is critical for every application

• Often treated as an afterthought

• Disconnect between importance and implementation

3 @phrawzty // cerbos.dev



The Evolution of Developer Primitives

• Consider how cloud-native development has evolved

• Networking: From manual configuration to service mesh and CNI

• Storage: From volume management to persistent volume claims and CSI

• Deployment: From manual scripts to GitOps and CI/CD pipelines

• Each evolved from infrastructure concerns to developer primitives

• Each transformation made developers more productive while improving 
quality

4 @phrawzty // cerbos.dev



Why Authorization Has Lagged Behind

• Deep coupling with application logic: Authorization often lives inside 
business logic

• Domain-specific requirements: Financial services vs. SaaS vs. healthcare

• Complex relationships: Modern applications have intricate permission 
models

• No one-size-fits-all solution: Each framework reinvents authorization

• Result: Authorization remains stuck as an infrastructure concern rather 
than a developer primitive

5 @phrawzty // cerbos.dev



The High Cost of Complexity

• Cognitive overhead: Developers constantly context-switch between 
business logic and auth

• Security gaps: Inconsistent implementation leads to vulnerabilities

• Velocity impact: Authorization changes require extensive regression testing

• Onboarding friction: New team members struggle to understand 
permission models

• This is both a security problem and a developer experience problem

6 @phrawzty // cerbos.dev



The Workflow Opportunity

• What if authorization was a creative tool rather than just a constraint?

• Low friction is essential for good developer experience

• Authorization can be declarative rather than imperative

• The right abstractions can make authorization intuitive and maintainable

• Transition to workflow-first thinking opens new possibilities

7 @phrawzty // cerbos.dev



Authorization as a Foundational Architectural 
Concern
• Traditionally, authentication gets architectural attention, authorization 

becomes scattered if/else statements

• The workflow-first approach makes authorization decisions first-class 
architectural elements

• This creates clear boundaries between business logic and permission logic

• Authorization becomes a service rather than embedded code

8 @phrawzty // cerbos.dev



From Security Constraint to Product Feature

• Traditional question: 'What can't users do?' (negative framing)

• Better question: 'How do we enable the right access?' (positive framing)

• Permissions become part of product discussions - not just security reviews

• Authorization drives user experience through progressive disclosure

9 @phrawzty // cerbos.dev



Core Design Principle: Domain-Driven 
Authorization
• Model permissions around business domains not technical constructs

• Permissions should speak the language of the product, not the codebase

• Ubiquitous language between product, development, and security teams

• Example: Document permissions that model 'Editor' and 'Reviewer' roles 
instead of CRUD operations

• This aligns security with how users think about your application

10 @phrawzty // cerbos.dev



Core Design Principle: Declarative Policies

• Move from imperative checks scattered throughout code

• To declarative policies that describe intent

• Policies become human-readable artifacts

• Enables version control and review of authorization logic

11 @phrawzty // cerbos.dev



Core Design Principle: External Decision Points

• Decouple authorization from application logic

• Application asks 'Can this user do this?' to a dedicated service

• Enables consistent enforcement across services

• Allows independent scaling of authorization logic

• Makes authorization logic testable in isolation

12 @phrawzty // cerbos.dev



Core Design Principle: Context-Awareness

• Move beyond simple role-based access control

• Consider attributes like time, location, resource properties

• Authorization that adapts to context is more flexible

• Example: Different permission rules during business hours vs. after hours

• Enables fine-grained control without explosion of roles

13 @phrawzty // cerbos.dev



The Authorization Ecosystem

• A rich ecosystem of open source tools has emerged

• CNCF projects leading standardization efforts

• Different tools for different architectural approaches

• All share the goal of making authorization more manageable

• Each addresses different parts of the authorization challenge

14 @phrawzty // cerbos.dev



Open Policy Agent (OPA)

• CNCF graduated project for policy enforcement

• General-purpose policy engine beyond just authorization

• Rego policy language for expressing rules

15 @phrawzty // cerbos.dev



OpenFGA: Fine-Grained Authorization

• CNCF Sandbox project focused on relationship-based authorization

• Based on Google's Zanzibar paper - same system that powers Google Drive 
permissions

• Excels at modeling arbitrary relationships between objects

16 @phrawzty // cerbos.dev



AuthZen (OpenID Foundation)

• Working group standardizing authorization APIs and interface

• Building on success of OAuth 2.0 and OpenID Connect

• Focus on interoperability between authorization systems

• Important for long-term evolution of the authorization ecosystem

17 @phrawzty // cerbos.dev



Cerbos: Developer-Centric Authorization

• Human-readable YAML policies that product teams can understand

• IDE integrations for real-time policy validation

• Designed for frictionless developer workflows

• Particularly strong for testing and debugging authorization logic

18 @phrawzty // cerbos.dev



Choosing the Right Tool

• No one-size-fits-all solution

• Consider your architecture and team structure

• OPA: Broad policy enforcement beyond just authorization

• OpenFGA: Complex relationship-based permissions at scale

• Cerbos: Developer workflow integration and simplicity

• Many teams use multiple tools for different aspects

19 @phrawzty // cerbos.dev



Pattern Categories Overview

• Architectural patterns: How authorization fits into your system architecture

• Development patterns: How to integrate with developer workflows

• Testing patterns: How to verify authorization logic effectively

20 @phrawzty // cerbos.dev



Architectural Pattern: Authz as a Service

• Encapsulate authorization logic in a dedicated service

• Applications make explicit authorization requests

• Enables consistent enforcement across services

• Simplifies policy updates without changing application code

21 @phrawzty // cerbos.dev



Architectural Pattern: Sidecar Deployment

• Deploy authorization engine alongside each service instance

• Low latency for authorization decisions

• No network hop for every decision

• Maintains consistent policies via centralized distribution

• Perfect for Kubernetes environments

22 @phrawzty // cerbos.dev



Architectural Pattern: Multi-Layer Authorization

• Authorization at multiple system layers

• Coarse-grained at API gateway or ingress

• Service-level for business logic authorization

• Data-level for fine-grained access control

• Each layer handles what it's best suited for

• Example: Combining API gateway rules, service policies, and row-level 
security

23 @phrawzty // cerbos.dev



Development Pattern: Policy-Driven Design

• Start with authorization requirements before implementation

• Define policies in domain-specific language or specification

• Generate test cases from policy definitions

• Use policies to drive API design

• Enables clear separation of business logic and authorization

24 @phrawzty // cerbos.dev



Development Pattern: Request Context 
Enrichment
• Augment requests with rich context information

• Move beyond simple user IDs to full context objects

• Context includes user attributes, resource metadata, environmental factors

• Enables sophisticated, context-aware decisions

• Implementation using request middleware or interceptors

25 @phrawzty // cerbos.dev



Testing Pattern: Policy Unit Testing

• Test policies independent of application code

• Table-driven testing for multiple scenarios

• Verify both allowed and denied cases

• Test for edge cases and unusual conditions

• Catch policy bugs before they reach production

26 @phrawzty // cerbos.dev



Testing Pattern: Authorization Test Fixtures

• Create reusable test users with different permission profiles

• Standard test resources with various access patterns

• Authorization-aware test helpers for common operations

• Makes writing permission-aware tests much easier

27 @phrawzty // cerbos.dev



Practical Workflow Integration

• Local development with policy simulation

• IDE plugins for real-time policy validation

• PR checks for policy consistency

• Documentation generation from policies

• Debugging tools for authorization decisions

• Creates a seamless experience from dev to production

28 @phrawzty // cerbos.dev



Key Transformations

• We've explored three fundamental transformations in how we approach 
authorization

• From friction to flow in the development process

• Security by design rather than security as an add-on

• Empowered developers making better security decisions

29 @phrawzty // cerbos.dev



From Friction to Flow

• Traditional approach: Authorization interrupts development flow

• New approach: Authorization tooling enhances productivity

• The difference is measurable in developer satisfaction and output

• When authorization is seamless, creativity flourishes

30 @phrawzty // cerbos.dev



Security by Design

• Security isn't something you add at the end

• Authorization primitives built into your architecture from day one

• This shift fundamentally changes the security posture of your applications

• The result: more secure systems that are easier to maintain

31 @phrawzty // cerbos.dev



Empowered Developers

• Knowledge is power: developers who understand authorization make better 
decisions

• Clear patterns and tools democratize security expertise

• This creates a positive security culture across development teams

• When developers are empowered, the entire organization benefits

32 @phrawzty // cerbos.dev



Thank You

• Authorization should enable great software, not hinder it

• The tools and patterns exist today to transform your approach

33 @phrawzty // cerbos.dev


