
@LostInBrittanyIntroduction to Time Series

Introducing
Time Series & Warp 10

Horacio Gonzalez
@LostInBrittany

@LostInBrittanyIntroduction to Time Series

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany, developer,
dreamer and all-around geek

@LostInBrittanyIntroduction to Time Series

Time Series
What are they?

@LostInBrittanyIntroduction to Time Series

Time Series

Definition of Time Series:
An ordered sequence of values of a variable at
equally spaced time intervals.

@LostInBrittanyIntroduction to Time Series

Time Series

● Stock Market Analysis
● Economic Forecasting
● Budgetary Analysis
● Process and Quality Control
● Workload Projections
● Census Analysis
● ...

@LostInBrittanyIntroduction to Time Series

Time Series

Applications:
● Understanding

the data
● Fit a model

○ Monitoring
○ Forecasting

@LostInBrittanyIntroduction to Time Series

Time Series

Stock market Analytics
Economic Forecasting

$$$

Study & Research

@LostInBrittanyIntroduction to Time Series

Time Series

Many specific analytical tools:
● Moving average
● ARMA (AutoRegressive Moving Average)
● Multivariate ARMA models
● ARCH (AutoRegressive Conditional Heteroscedasticity)

● Dynamic time warping
● ...

@LostInBrittanyIntroduction to Time Series

Time Series

Specific application of general tools
● Artificial neural networks
● Hidden Markov model
● Fourier & Wavelets transforms
● Entropy encoding
● ...

@LostInBrittanyIntroduction to Time Series

Time Series Databases
What tools do I use?

@LostInBrittanyIntroduction to Time Series

Time Series Databases

General purpose data analytics tools:
● Matlab
● Python
● R
● …

General purpose relational database engine

@LostInBrittanyIntroduction to Time Series

Time Series Databases

Does not scale!

@LostInBrittanyIntroduction to Time Series

Time Series Databases

Many type of database engine
● Relational databases
● Key-value databases
● Document databases
● Graph databases
● ...

@LostInBrittanyIntroduction to Time Series

Time Series Databases

What about Time Series?

Time Series databases!

@LostInBrittanyIntroduction to Time Series

Time Series Databases

Data model: time series

@LostInBrittanyIntroduction to Time Series

Time Series Databases

The 3 'v'

@LostInBrittanyIntroduction to Time Series

Time Series Databases

Many options

@LostInBrittanyIntroduction to Time Series

Time Series Databases

@LostInBrittanyIntroduction to Time Series

Time Series Databases

@LostInBrittanyIntroduction to Time Series

Time Series Databases

@LostInBrittanyIntroduction to Time Series

Time Series Databases

@LostInBrittanyIntroduction to Time Series

Time Series Databases

@LostInBrittanyIntroduction to Time Series

Warp 10
Open-source Time Series Database

@LostInBrittanyIntroduction to Time Series

More than a Time Series DB

Warp 10 is a software platform that
● Ingests and stores

time series
● Manipulates and

analyzes time series

@LostInBrittanyIntroduction to Time Series

#collect
How do you get these metrics?

Image: Games Radar

http://www.gamesradar.com/the-8-best-game-watch-games/

@LostInBrittanyIntroduction to Time Series

Collecting data

Warp 10's Sensision agent

@LostInBrittanyIntroduction to Time Series

Collecting data

3rd party collectors

@LostInBrittanyIntroduction to Time Series

Collecting data

Any HTTP capable device

@LostInBrittanyIntroduction to Time Series

Choosing an input format

@LostInBrittanyIntroduction to Time Series

XML? JSON?
<gts>

 <ts>1457097328123456</ts>
 <lat>45.0</lat>
 <lon>-0.01<lon>
 <e>100<e>
 <c>foo.bar</c>
 <ls>
 <l>

<k>label1</k>
<v>val1</v>

</l>
 </ls>
<v>4.2</v>

</gts>

{
 "ts": 1457097328123456,
 "lat": 45.0,
 "lon": -0.01,
 "e": 100,
 "c": "foo.bar",
 "l":[
 {

"k": "label1",
"v": "val1"

}
],
"v": 4.2

}139 bytes 108 bytes

@LostInBrittanyIntroduction to Time Series

Warp 10 GTS Input Format

1457097328123456/45.0:-0.01/100 foo.bar{label1=val1} 4.2

57 bytes
But size isn't the most important reason

parsing time is way more important

XML or even JSON parsing is slow and costly
Warp 10 GTS input format isn't

@LostInBrittanyIntroduction to Time Series

1457097328123456/45.0:-0.01/100 foo.bar{label1=val1} 4.2

timestamp (µs by default)

 latitude:longitude (WGS84)

 elevation (millimeters)

 classname*

 labels (key=value)

 value* (long, double, boolean or string)
* mandatory fields

Warp 10 GTS Input Format

@LostInBrittanyIntroduction to Time Series

#store
From tiny to huge

Image: Games Radar

http://www.gamesradar.com/the-8-best-game-watch-games/

@LostInBrittanyIntroduction to Time Series

Warp 10 on Raspberry Pi B+

1 000 datapoints per second

@LostInBrittanyIntroduction to Time Series

Warp 10 on Raspberry Pi 2 B

3 000 datapoints per second

@LostInBrittanyIntroduction to Time Series

Warp 10 on a modern server

120 000 datapoints per second

@LostInBrittanyIntroduction to Time Series

Warp 10 on a cluster

5 millions of datapoints per second

@LostInBrittanyIntroduction to Time Series

#analyse
From tiny to huge

Image: Amazon

http://www.amazon.com/Lego-Series-Detective-Mini-Figure/dp/B005JUV0ZU

@LostInBrittanyIntroduction to Time Series

Many time-series solutions

TSAR

@LostInBrittanyIntroduction to Time Series

But they are only stores...

Fetching data is only the tip of the iceberg

@LostInBrittanyIntroduction to Time Series

Analysing the data

High level analysis must be done elsewhere

@LostInBrittanyIntroduction to Time Series

Algorithms are resource hungry

@LostInBrittanyIntroduction to Time Series

Your computer is not a datacenter

@LostInBrittanyIntroduction to Time Series

Manipulating GTS

To be scalable, analysis must be done in
Warp 10 platform, not in user's computer

@LostInBrittanyIntroduction to Time Series

A true GTS analysis toolbox
○ Hundreds of functions
○ Manipulation frameworks
○ Analysis workflow

Manipulating GTS

@LostInBrittanyIntroduction to Time Series

GTS manipulation

Why not a simple REST API?
● One endpoint by function?
● How to chain a workflow analysis?

 REST API not suitable for
complex manipulations

@LostInBrittanyIntroduction to Time Series

GTS manipulation

Why not a SQL dialect?
● How do you do a simple moving average in SQL?
● How do you geo-time fencing in SQL?

SQL is not adapted to (G)TS analysis!

@LostInBrittanyIntroduction to Time Series

GTS manipulation language

Our solution: a GTS manipulation language

WarpScript

@LostInBrittanyIntroduction to Time Series

A stack based language

@LostInBrittanyIntroduction to Time Series

Basic operations

// This is a commentary
'a' // string value
true // boolean value
42 // long value
3.14159 // double value
+ // operations

20 22 + // several items in one line

@LostInBrittanyIntroduction to Time Series

Five frameworks

● BUCKETIZE
● MAP
● REDUCE
● FILTER
● APPLY

@LostInBrittanyIntroduction to Time Series

More than 800 functions

List & Maps

Strings

Logic
Structures

Data & Time

Maths &
statistics

Trigonometry

Loop
Structures

Macros

@LostInBrittanyIntroduction to Time Series

Time series functions

TIMECLIP

TIMESPLIT

SHRINK

MERGE
...

@LostInBrittanyIntroduction to Time Series

Time series functions

MUSIGMA

NORMALIZE

NSUMSUMQ

STANDARDISE

ZSCORE

...

@LostInBrittanyIntroduction to Time Series

Geo-Time Series functions

Geo mapping (WKT)

Horizontal & vertical speed

Horizontal & vertical distance

Haversine
...

@LostInBrittanyIntroduction to Time Series

Quantum IDE

@LostInBrittanyIntroduction to Time Series

Enough teasing...

@LostInBrittanyIntroduction to Time Series

Fuel prices data

16 297 448 metrics

11 379 fuel stations

42 885 Geo Time Series

@LostInBrittanyIntroduction to Time Series

Basic analysis
Average diesel fuel prices in France

since 2007

Image: LEGO Ideas

https://ideas.lego.com/projects/54995

@LostInBrittanyIntroduction to Time Series

First Fetch Data (SQL vs WarpScript)

SELECT 'gazole_price', 'station_id'
FROM opendata_fuel WHERE fuel_date between
'2007-01-01T00:00:00.000000Z' AND
'2015-12-31T23:59:59.999999Z'

[
 'API TOKEN'
 'opendata.fuel' { 'type' 'gazole' }
 '2007-01-01T00:00:00.000000Z'
 '2015-12-31T23:59:59.999999Z'
] FETCH

@LostInBrittanyIntroduction to Time Series

FETCH gives us a GTS list

[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},
 "v":[[1451452320000000,45.526001,5.974660,1.159],[1450501920000000,45.526001,5.974660,1.169], ...]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},
 "v":[[1450771934000000,47.423929,2.053439,0.988],[1450426320000000,47.423929,2.053439,0.999], ...]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},
 "v":[[1419685260000000,43.732249,-0.238590,1.249],[1419426000000000,43.732249,-0.238590,1.259], ...]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},
 "v":[[1449220339000000,44.278179,2.429619,1.2],[1446631880000000,44.278179,2.429619,1.22], ...]
 },
 {
 "c":"data.fuel","l":{"id":"85490001","type":"gazole",".app":"gazoline"},
 "v":[[1451560370000000,46.369959,-0.594400,0.969],[1451459537000000,46.369959,-0.594400,0.969], ...]
 },
 ...
]

@LostInBrittanyIntroduction to Time Series

FETCH gives us a GTS list

[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},
 "v":[[1451452320000000,45.526001,5.974660,1.159],[1450501920000000,45.526001,5.974660,1.169], ...]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},
 "v":[[1450771934000000,47.423929,2.053439,0.988],[1450426320000000,47.423929,2.053439,0.999], ...]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},
 "v":[[1419685260000000,43.732249,-0.238590,1.249],[1419426000000000,43.732249,-0.238590,1.259], ...]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},
 "v":[[1449220339000000,44.278179,2.429619,1.2],[1446631880000000,44.278179,2.429619,1.22], ...]
 }, ...
]

Timestamp
(microseconds since epoch)

@LostInBrittanyIntroduction to Time Series

FETCH gives us a GTS list

[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},
 "v":[[1451452320000000,45.526001,5.974660,1.159],[1450501920000000,45.526001,5.974660,1.169], ...]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},
 "v":[[1450771934000000,47.423929,2.053439,0.988],[1450426320000000,47.423929,2.053439,0.999], ...]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},
 "v":[[1419685260000000,43.732249,-0.238590,1.249],[1419426000000000,43.732249,-0.238590,1.259], ...]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},
 "v":[[1449220339000000,44.278179,2.429619,1.2],[1446631880000000,44.278179,2.429619,1.22], ...]
 }, ...
]

Location
(latitude, longitude)

@LostInBrittanyIntroduction to Time Series

FETCH gives us a GTS list

[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},
 "v":[[1451452320000000,45.526001,5.974660,1.159],[1450501920000000,45.526001,5.974660,1.169], ...]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},
 "v":[[1450771934000000,47.423929,2.053439,0.988],[1450426320000000,47.423929,2.053439,0.999], ...]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},
 "v":[[1419685260000000,43.732249,-0.238590,1.249],[1419426000000000,43.732249,-0.238590,1.259], ...]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},
 "v":[[1449220339000000,44.278179,2.429619,1.2],[1446631880000000,44.278179,2.429619,1.22], ...]
 }, ...
]

Value

@LostInBrittanyIntroduction to Time Series

Calculate the average

Using Groovy:
int sumValue = 0

int counter = 0

for (def station: stations) {

 int stationSum = 0

 int stationCounter = 0

 for (def value: values) {

 sumValue += value.price

 counter ++

 stationSum += value.price

 stationCounter ++

 }

 station.meanPrice = stationSum / stationCounter

}

double meanPrice = sumValue / counter

@LostInBrittanyIntroduction to Time Series

Calculate the average with WarpScript

1- Calculate the mean price by station

// mean fuel price by station
[
 $gts // gts list from fetch
 bucketizer.mean // average computing
 NOW // align all buckets
 0 // bucket span auto
 1 // number of buckets
] BUCKETIZE

@LostInBrittanyIntroduction to Time Series

Calculate the average with WarpScript

BUCKETIZE framework

Put the data of a GTS into regularly spaced buckets

@LostInBrittanyIntroduction to Time Series

Calculate the average with WarpScript
[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},
 "v":[[1457451425216748,45.526001,5.974660,1.164]]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},
 "v":[[1457451425216748,47.423929,2.053439,0.9935]]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},
 "v":[[1457451425216748,43.732249,-0.238590,1.254]]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},
 "v":[[1457451425216748,44.278179,2.429619,1.21]]
 },
 {
 "c":"data.fuel","l":{"id":"85490001","type":"gazole",".app":"gazoline"},
 "v":[[1457451425216748,46.369959,-0.594400,0.969]]
 },
 ...
]

@LostInBrittanyIntroduction to Time Series

Calculate the average with WarpScript

2- Reduce to get the global average

// mean fuel price for all stations
[] // use all labels
reducer.mean // mean function
3 ->LIST // to list
REDUCE // execute reducer

@LostInBrittanyIntroduction to Time Series

Calculate the average with WarpScript

REDUCE framework

Apply a function on a set of GTS tick by tick

@LostInBrittanyIntroduction to Time Series

 // mean fuel price for all stations

 [

 [$gts bucketizer.mean NOW 0 1] BUCKETIZE

 []

 reducer.mean

] REDUCE

Too verbose? Write it differently

@LostInBrittanyIntroduction to Time Series

 // mean fuel price by station

 [$gts bucketizer.mean NOW 0 1] BUCKETIZE

 // mean fuel price for all stations

 [SWAP [] reducer.mean] REDUCE

Even more concise

@LostInBrittanyIntroduction to Time Series

Basic analysis
Mean of the last available

diesel fuel prices in France

Image: LEGO Ideas

https://ideas.lego.com/projects/54995

@LostInBrittanyIntroduction to Time Series

Fetching Data (SQL vs WarpScript)

SELECT t1.* FROM opendata_fuel t1
 JOIN (
 SELECT 'gazole_price', 'station_id', MAX(fuel_date)
 FROM opendata_fuel t2
 GROUP BY 'station_id')
 ON t1.station_id = t2.station_id AND
 t1.fuel_date = t2.fuel_date

[
 'API TOKEN'
 'opendata.fuel' { 'type' 'gazole' }
 NOW -1
] FETCH

@LostInBrittanyIntroduction to Time Series

FETCH gives us a GTS list
[
 {
 "c":"data.fuel","l":{"id":"73800001","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1451452320000000,45.526001,5.974660,1.159]]
 },
 {
 "c":"data.fuel","l":{"id":"41300001","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1450771934000000,47.423929,2.053439,0.988]]
 },
 {
 "c":"data.fuel","l":{"id":"40800005","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1419685260000000,43.732249,-0.238590,1.249]]
 },
 {
 "c":"data.fuel","l":{"id":"12160002","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1449220339000000,44.278179,2.429619,1.2]]
 },
 {
 "c":"data.fuel","l":{"id":"85490001","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1451560370000000,46.369959,-0.594400,0.969]]
 },
 {"c":"data.fuel","l":{"id":"39700001","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1420002013000000,47.117552,5.540754,1.072]]
 },
 ...
]

@LostInBrittanyIntroduction to Time Series

Mean of those last prices

align ticks with BUCKETIZE framework

compute the average with REDUCE

@LostInBrittanyIntroduction to Time Series

Geo-time analysis
Find the cheapest fuel station near here

48.115434, -1.636877

@LostInBrittanyIntroduction to Time Series

POLYGON ((-1.66378 48.13340, -1.60996 48.13340,
 -1.60996 48.09746, -1.66378 48.09746,
 -1.66378 48.13340))

WKT: Well-known text
geometry

@LostInBrittanyIntroduction to Time Series

 // converts WKT into geographical zone
 'POLYGON ((…))'
 0.1 // error percentage
 true // true for inside
 GEO.WKT

WKT in WarpScript

@LostInBrittanyIntroduction to Time Series

Geo-filtering points of GTS
 [
 $gts // GTS list
 $geozone // from GEO.WKT
 Mapper.geo.within // keep inner points
 0 // pre
 0 // post
 0 // occurences
] MAP NONEMPTY

@LostInBrittanyIntroduction to Time Series

Geo-filtering points of GTS

MAPPER framework

Apply a function on values of a GTS
that fall into a sliding window

@LostInBrittanyIntroduction to Time Series

The stations near my position
[
 {
 "c":"data.fuel","l":{"id":"35000020","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1451517120000000,48.113564,-1.637989,0.962]]
 },{
 "c":"data.fuel","l":{"id":"35000022","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1451517120000000,48.127478,-1.650935,0.979]]
 },{
 "c":"data.fuel","l":{"id":"35000004","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1419919968000000,48.113564,-1.637989,1.069]]
 },{
 "c":"data.fuel","l":{"id":"35000003","type":"gazole",".app":"gazoline"},"a":{},
 "v":[[1419878728000000,48.127478,-1.650935,1.068]]
 }
]

@LostInBrittanyIntroduction to Time Series

There can only be one
 VALUESORT // Sort by value
 0 GET // Take the first

@LostInBrittanyIntroduction to Time Series

And this is only the surface
Possibilities are endless

@LostInBrittanyIntroduction to Time Series

Think differently

Geo-Time Series are everywhere

@LostInBrittanyIntroduction to Time Series

Warp 10 platform and tools

@LostInBrittanyIntroduction to Time Series

OVH Metrics
What did we choose?

@LostInBrittanyIntroduction to Time Series

What's OVH Metrics

 Managed Cloud Platform for Geo Time Series®

@LostInBrittanyIntroduction to Time Series

What’s a metric?

[me-trik] : the science of measuring

@LostInBrittanyIntroduction to Time Series

What’s a metric?

“To measure is to know”
William “Lord Kelvin” Thomson

@LostInBrittanyIntroduction to Time Series

What’s a metric?

Actionable metric ≠ vanity metric

@LostInBrittanyIntroduction to Time Series

What is a metric?

Metrics are Time Series!

@LostInBrittanyIntroduction to Time Series

How do we deal with metrics?

Using a Time Series Database!

But… which one?

Why choose? Let’s support all of them!

@LostInBrittanyIntroduction to Time Series

Metrics Data Platform

@LostInBrittanyIntroduction to Time Series

Metrics Data Platform

+ +

@LostInBrittanyIntroduction to Time Series

Conclusion
That's all folks!

@LostInBrittanyIntroduction to Time Series

Thank you!

@LostInBrittanyIntroduction to Time Series

