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The Art(?) of 
Front-end Architecture



👋 Hi! I’m Adrià Fontcuberta

Senior(?) Software Engineer @ Holaluz
Member of the official Vue Test Utils
Member of Testing Library
Co-organizer of VueJS Barcelona

@afontq

afontcu.dev
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Write maintainable, 
scalable apps

Stay away from the 
framework

Share knowledge 
between teams and areas

Reduce the gap between 
Front and Back

What are* we aiming for?



This is not about writing good 
software, but how to build software 

that can change over time
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two streams 

of data
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UI / Input



Infrastructure

API repositories

Cookies

Web Storage



UI

¯\_(ツ)_/¯
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delivery 
mechanism
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It is external.
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type Coordinate = 0 | 1 | 2 
type Sign = "X" | "O" | "" 

class Board { 
  public isFull(): boolean {} 
  public isPositionTaken(cell: Cell): boolean {} 
  public fillPosition(cell: Cell, player: Player): void {} 
} 

class Cell { 
  private row: Coordinate 
  private col: Coordinate 
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class Game { 
  private board: Board 
  private isEnded: (): boolean 
  private getLastPlayer(): Player  

  public makeMove(player: Player, cell: Cell): void { 
    if (this.isEnded()) 
      throw new FinishedGameException() 

    if (player.equals(this.getLastPlayer())) 
      throw new AlreadyPlayedException() 

    if (this.board.isPositionTaken(cell)) 
      throw new AlreadyTakenException() 

    this.board.fillPosition(cell, player) 
  } 
}
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const actions = { 
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import { makeMoveUseCase } from 'application/!!...' 

$(‘#submit_move’).click(function() { 
  makeMoveUseCase( 
    { 
      player: $('#current_player').val(), 
      game: window.game, 
      cell: [$('input[name="row"]').val(), $('input[name="col"]').val()] 
    }, 
    { 
      onSuccess: () !=> $('#success_message').fadeIn('slow'), 
      onError: () !=> window.alert('oops something went wrong') 
    } 
  ) 
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Front-end development is 
software development
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Nothing explained 
here today is new
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software development



This is not about writing good 
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👋 That's all!

@afontq
afontcu.dev

noti.st/afontcu


