

Disclaimer

Disclaimer

This talk is not
about the front end

Disclaimer

This talk is about
software architecture

Disclaimer

This talk is about
software architecture

(Yes, at 18:00 on a Saturday. Sorry not sorry)

BACK

We asked for
responsibilities

The Art(?) of
Front-end Architecture

👋 Hi! I’m Adrià Fontcuberta

Senior(?) Software Engineer @ Holaluz
Member of the official Vue Test Utils
Member of Testing Library
Co-organizer of VueJS Barcelona

@afontq

afontcu.dev

HLFF20

What are* we aiming for?

Write maintainable,
scalable apps

What are* we aiming for?

Write maintainable,
scalable apps

Stay away from the
framework

What are* we aiming for?

Write maintainable,
scalable apps

Stay away from the
framework

Share knowledge
between teams and areas

What are* we aiming for?

Write maintainable,
scalable apps

Stay away from the
framework

Share knowledge
between teams and areas

Reduce the gap between
Front and Back

What are* we aiming for?

This is not about writing good
software, but how to build software

that can change over time

Business stuff

Delivery stuff

Business stuff

Delivery stuff

Business stuff

Delivery stuff

Business stuff

Delivery stuff

Delivery stuff

Domain

Use cases

Delivery stuff

Domain

Domain

Use cases

Domain

Use cases

Delivery

This layer has
two streams

of data

Infrastructure

Infrastructure

UI / Input

Infrastructure

API repositories

Cookies

Web Storage

UI

¯_(ツ)_/¯

What does layer
really mean?

Dependencies only
point inwards

Dependencies only
point inwards

An inner layer should
never rely on anything
from an outer layer.

Dependencies only
point inwards

An inner layer should
never rely on anything
from an outer layer.

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on the UI framework

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on the UI framework

Use case “Get user information”
depends on “User”

Use case “Get user information”
depends on the UI framework

BACK

The Web is a
delivery
mechanism

It is not
the center.
It is external.

It is really,
really hard to
get it right

We need to
adapt its
content for our
inner layers

We need to
adapt its
content for our
inner layers

Domain

Use cases

Infrastructure

Adapter

UI

Domain

Infrastructure

Adapter

UI

Use cases

Independent of
the framework

Domain

Infrastructure

Adapter

UI

Use cases

Independent of
the framework

The framework™

Domain

Infrastructure

Adapter

UI

Use cases

Independent of
the framework

Domain

Infrastructure

Use cases

Independent of
the framework

Domain

Infrastructure

Use cases

domainapp*UI

infra

adapter

domainapp*UI

infra

adapter👩

Actions Reducers State

View

Actions Mutations State

View

domainappUI adapter

infra

domainappUI adapter

infra

👩

actions

mutations

state

domainappUI

infra

actions

mutations

state

domainappUI

infra

👩

type Coordinate = 0 | 1 | 2
type Sign = "X" | "O" | ""

class Board {
 public isFull(): boolean {}
 public isPositionTaken(cell: Cell): boolean {}
 public fillPosition(cell: Cell, player: Player): void {}
}

class Cell {
 private row: Coordinate
 private col: Coordinate
}

class Player {
 public sign: Sign
 public equals(player: Player): boolean {}
}

type Coordinate = 0 | 1 | 2
type Sign = "X" | "O" | ""

class Board {
 public isFull(): boolean {}
 public isPositionTaken(cell: Cell): boolean {}
 public fillPosition(cell: Cell, player: Player): void {}
}

class Cell {
 private row: Coordinate
 private col: Coordinate
}

class Player {
 public sign: Sign
 public equals(player: Player): boolean {}
}

THIS IS NOT

"THE RITE WAY”

type Coordinate = 0 | 1 | 2
type Sign = "X" | "O" | ""

class Board {
 public isFull(): boolean {}
 public isPositionTaken(cell: Cell): boolean {}
 public fillPosition(cell: Cell, player: Player): void {}
}

class Cell {
 private row: Coordinate
 private col: Coordinate
}

class Player {
 public sign: Sign
 public equals(player: Player): boolean {}
}

class Game {
 private board: Board
 private isEnded: (): boolean
 private getLastPlayer(): Player

 public makeMove(player: Player, cell: Cell): void {
 if (this.isEnded())
 throw new FinishedGameException()

 if (player.equals(this.getLastPlayer()))
 throw new AlreadyPlayedException()

 if (this.board.isPositionTaken(cell))
 throw new AlreadyTakenException()

 this.board.fillPosition(cell, player)
 }
}

function makeMoveUseCase({ game, player, cell }, { onSuccess, onError }) {
 try {
 game.makeMove(player, cell)
 } catch (error) {
 onError(error)
 return
 }

 onSuccess(player, cell)
}

function makeMoveUseCase({ game, player, cell }, { onSuccess, onError }) {
 try {
 game.makeMove(player, cell)
 } catch (error) {
 onError(error)
 return
 }

 onSuccess(player, cell)
}

function makeMoveUseCase({ game, player, cell }, { onSuccess, onError }) {
 try {
 game.makeMove(player, cell)
 } catch (error) {
 onError(error)
 return
 }

 onSuccess(player, cell)
}

import { makeMoveUseCase } from 'application/!!...'

const actions = {
 makeMove({ state, commit }, cell) {
 commit('MAKE_MOVE_REQUEST')

 makeMoveUseCase({
 player: state.currentPlayer,
 game: state.game,
 cell
 }, {
 onSuccess: (player) !=> commit('MAKE_MOVE_SUCCESS', player),
 onError: (error) !=> commit('MAKE_MOVE_ERROR', error.message)
 })
 }
}

import { makeMoveUseCase } from 'application/!!...'

const actions = {
 makeMove({ state, commit }, cell) {
 commit('MAKE_MOVE_REQUEST')

 makeMoveUseCase({
 player: state.currentPlayer,
 game: state.game,
 cell
 }, {
 onSuccess: (player) !=> commit('MAKE_MOVE_SUCCESS', player),
 onError: (error) !=> commit('MAKE_MOVE_ERROR', error.message)
 })
 }
}

import { makeMoveUseCase } from 'application/!!...'

$(‘#submit_move’).click(function() {
 makeMoveUseCase(
 {
 player: $('#current_player').val(),
 game: window.game,
 cell: [$('input[name="row"]').val(), $('input[name="col"]').val()]
 },
 {
 onSuccess: () !=> $('#success_message').fadeIn('slow'),
 onError: () !=> window.alert('oops something went wrong')
 }
)
})

import { makeMoveUseCase } from 'application/!!...'

$(‘#submit_move’).click(function() {
 makeMoveUseCase(
 {
 player: $('#current_player').val(),
 game: window.game,
 cell: [$('input[name="row"]').val(), $('input[name="col"]').val()]
 },
 {
 onSuccess: () !=> $('#success_message').fadeIn('slow'),
 onError: () !=> window.alert('oops something went wrong')
 }
)
})

src/
domain/
application/
infrastructure/
ui/

domainappUI adapter

infra

domainappUI adapter

infra

Disclaimer #1

You might not need
any of this

Disclaimer #1

You might want
some parts of it

Disclaimer #2

 This talk was actually
about the front end

Front-end development is
software development

Disclaimer #3

Nothing explained
here today is new

Wrapping up

Wrapping up

Organize code around
business rules, not

frameworks

Wrapping up

Organize code around
business rules, not

frameworks

Dependency Rule
Keep details away from

the core

Wrapping up

Organize code around
business rules, not

frameworks

Dependency Rule
Keep details away from

the core

Make everything
easy to test

Wrapping up

Organize code around
business rules, not

frameworks

Dependency Rule
Keep details away from

the core

Make everything
easy to test

Front-end development is
software development

This is not about writing good
software, but how to build software

that can change over time

Ok Adri this is cool

Where should I start?

Ok Adri this is cool

Where should I start?

noti.st/afontcu

👋 That's all!

@afontq
afontcu.dev

noti.st/afontcu

