
HTML5 APIs

- DREW MCLELLAN -
- CONFOO MONTREAL 2017 -

- YOU’VE NEVER HEARD OF -

HTML5 APIs

- DREW MCLELLAN -
- CONFOO MONTREAL 2017 -

- YOU’VE NEVER HEARD OF -

Hello!
flickr.com/photos/85520404@N03/9535499657

HTML5… APIs?

Front end

Back end

HTML5 APIs

The web is
changing rapidly

Ch-ch-ch-changes

Screens are getting smaller, and bigger, and
rounder, and wider, and taller, and wearable.

Pointing devices are becoming meatier.

We have access to many more hardware
features.

Web browsers are on the move.

Power consumption has become a concern.

Things we can do

Access device sensors like the gyroscope,
compass, light meter, GPS, camera,
microphone.

Control device outputs like the speaker,
vibration motor and screen.

Establish more app-like control of the
environment our code is running in.

Page Visibility
https://www.w3.org/TR/page-visibility/

Page Visibility

Enables us to programmatically determine if a
page is currently visible.

A page might be hidden if the window is
minimised, if the page is in a background tab, or
if the lock screen is shown.

(Plus a few transitionary states.)

Testing for visibility // Is the document visible?
var visible = !document.hidden;

// Listen for changes
document.addEventListener("visibilitychange", function(){
 console.log('Visibility changed!');
});

The visibility of the document
can be tested. You can add an
event listener to be informed
of when the visibility changes.

When is it useful?

Stopping ‘expensive’ operations like animation.

Ensuring that the user sees important
information like flash notifications or alerts.

Pausing media, where appropriate.

Browser support

Use it today!

There are lots of small cases where using this
simple API will provide a better experience for
your users.

Device Orientation
https://www.w3.org/TR/orientation-event/

Device Orientation

DOM events that provide information about the physical
orientation and motion of a device.

This is mostly useful for mobile phones and tablets.

Enables us to write code that detects physical movements
like rotation around a point and rate of rotation.

Not to be confused with screen orientation (portrait /
landscape).

Device Orientation // Test for support
if ('ondeviceorientation' in window) {
 // we have support for 'deviceorientation' events
};

// Listen for orientation changes
document.addEventListener("deviceorientation",  
 function(event){
 console.log(event);
});

The API provides browser DOM
events that we can attach
listeners to.

The events are fired rapidly, so
might need to be throttled (like
we do with window scroll
events).

Device Orientation // Access orientation properties
function(event){
 var alpha = event.alpha;
 var beta = event.beta;
 var gamma = event.gamma;
};

// A device flat on a horizontal surface
{
 alpha: 90,
 beta : 0,
 gamma: 0
}

var compass_heading = (360 - alpha);

Orientation values are
reported as alpha, beta and
gamma properties.

These are a series of rotations
from a local coordinate frame.

They can be used to calculate
compass headings with some
crazy mathematics… which is
all very usefully in the spec.

Device Orientation

Orientation is expressed in a
difference between the Earth
frame and the device frame.

Here they are aligned.

This horrible image is from the
spec, sorry.

Device Orientation

This marvellous work of art is
showing the device rotated
around the Z axis.

The value of Z remains the
same, and X and Y change.

This results in a change to the
alpha value.

Device Orientation

The beta value changes with
rotation around the X axis.

Device Orientation

The gamma value changes
with rotation around the Y
axis.

You’re probably best to just try
it. It makes more sense in
action.

Device motion // Test for support
if ('ondevicemotion' in window) {
 // we have support for 'devicemotion' events
};

// Listen for motion changes
document.addEventListener("devicemotion",  
 function(event){
 console.log(event);
});

The device motion events
primarily give you details of
acceleration.

This enables you to tell how
rapidly the device is changing
orientation.

Device motion

acceleration (m/s²)

accelerationIncludingGravity (m/s²)

rotationRate (deg/s)

interval (ms) (hardware capture speed)

Device motion // Access motion properties
function(event){
 var acceleration = {
 x: event.acceleration.x,
 y: event.acceleration.y,
 z: event.acceleration.z
 };

 var accelerationIncludingGravity = {
 x: event.accelerationIncludingGravity.x,
 y: event.accelerationIncludingGravity.y,
 z: event.accelerationIncludingGravity.z
 };

 var rotationRate = {
 alpha: event.rotationRate.alpha,
 beta : event.rotationRate.beta,
 gamma: event.rotationRate.gamma
 };
};

Acceleration, acceleration with
gravity and rotation rate can
all be read from the event
object when listing for device
motion events.

What you do with them then is
anybody’s guess. Good luck.

When is it useful?

Good for creating ‘physical world’ interactions.

It’s the same sensors that the Facebook mobile
app uses for displaying panoramas.

Could be used for game control.

Makes physical gestures possible (e.g. shake to
undo).

Align a map to match reality…

Browser support

Browser support

Orientation is supported better than motion.

Support for orientation is pretty wide (missing in
Chrome, Opera).

Missing support is often for the ever so exciting
compassneedscalibration event.

Start experimenting!

Browser support is not too bad.

Could be interesting to use for prototypes and
small projects.

There might be ways motion detection could be
useful for applications other than just updating
a view on the screen.

Lots of potential uses in mapping, gaming and
health applications.

Battery Status
http://www.w3.org/TR/battery-status/

Battery Status

Enables us to programatically monitor the
status of the device’s battery.

We can see if the battery is charging or
discharging, how long it will take to charge or
discharge, and what the current battery level is.

The interface is Promise-based.

Battery status navigator.getBattery().then(function(battery) {
 console.log(battery.level);

 // Listen for updates
 battery.addEventListener('levelchange', function(){
 console.log(this.level);
 });
});

The navigator object exposes a
getBattery promise.

If the device has multiple
batteries, the browser’s
BatteryManager interface
exposes a unified view.

Battery level is between 0 and
1.

Battery status navigator.getBattery().then(function(battery) {

 if (battery.charging) { 

 console.log('%d mins until full',  
 Math.floor(battery.chargingTime/60));
 
 } else {
 
 console.log('%d mins until empty',  
 Math.floor(battery.dischargingTime/60)); 
 }

});

By checking if the battery is
charging or discharging, we
can then get the time left until
that action completes.

If the battery is charging and
we ask for the discharge time,
it will be positive infinity which
is useful to no one.

The charging and discharging
times are in seconds.

When is it useful?

If a user’s battery is low, you might scale back on
any battery-intensive actions.

You might want to save the user’s progress to the
server or local storage if the battery is critically
low.

You might perform network polls frequently when
charging, but infrequently when discharging.

Browser support

Use it when available

If the battery status is available, you can make
use of it.

If not, just carry on with whatever you were
doing before. Those with supporting devices will
get the benefit, and that’s all you can do.

Not just phones - laptops too!

Vibration
https://www.w3.org/TR/vibration/

Vibration

Gives us access to the vibration mechanism of
the device.

That’s usually a phone or perhaps a tablet.

Designed for simple tactile feedback only,
nothing fancy.

Vibration // Vibrate for 1000 ms
navigator.vibrate(1000);

// Vibration to a pattern
navigator.vibrate([150, 50, 150]);

// Cancel any vibrations
navigator.vibrate(0);

Vibration time is set in
milliseconds.

When an array is given, the
even items are vibrations, the
odd items are pauses. This
enables more complex
patterns.

Any ongoing vibration can be
cancelled.

When is it useful?

Providing tactile feedback for important actions.

Could be used as a rumble in games.

Create a cool Morse code device?

Browser support

Use it!

Works in most mobile browsers other than iOS
Safari.

Should be safe to use as an extra where it is
supported.

Don’t design interactions that rely on it, and
maybe check battery status too!

Web Notifications
http://www.w3.org/TR/notifications/

Web Notifications

Enable us to issue an alert to the user outside
the context of the web page.

This is normally through the operating system’s
standard alerts mechanism.

Users must grant permission before
notifications can be shown.

Web Notifications if ('Notification' in window) {
 // Notifications are supported!
}

Notification.requestPermission(function(status) {
 if (status == 'granted') {
 // We have permission to notify!
 };
});

We can test for the Notification
property of the window object
to see if we have support.

Before sending a notification,
we need to request
permission. This call returns
either ‘granted’, ‘denied’ or
‘default’.

We can only send a notification
when the result is ‘granted’.

Web Notifications var notification = new Notification( 
 'Your life is in danger',  
 {
 body: 'You forgot to take your pills',
 icon: 'skull-and-crossbones.png'
 }
);

The Notification constructor
takes a title, and then an
object containing options.

Basic options are ‘body’ for the
message and ‘icon’ for an icon
to show with the notification.

Web Notifications var notification = new Notification(
 'Your life is in danger', {
 body: 'You forgot to take your pills',
 icon: 'skull-and-crossbones.png',
 tag: 'pills-warning',
 lang: 'en-US',
 dir: 'ltr'
 }
);

The ‘tag’ option acts like an ID
for the notification.

If there are multiple instances
of your code running (e.g. two
browser windows) the tag
prevents the notification being
duplicated.

It can also be used to address
the notification to cancel it.

Web Notifications notification.onclick = function() {
 console.log('Notification clicked on');
}

onclick

onclose

onerror

onshow

Notifications have
corresponding events to
enable you to track their state.

(In theory. I actually couldn’t
get these to work.)

What are they good for?

Notifying the user of background task
completion, e.g. encoding has finished, upload
has completed.

Notifying of incoming activity, e.g. a message
has been received, a user has logged in.

Browser support

Use them!

Pretty great support on desktop.

Judge carefully when to ask permission to
display notifications. Do it before you need to
send, but not before the user trusts you or
they’ll decline.

Web MIDI
https://www.w3.org/TR/webmidi/

MIDI?!

Musical Instrument Digital Interface

MIDI is a very well established protocol for
sending event messages about musical notes,
control signals and clock signals.

It’s used by musical keyboards, synths, drum
machines, digital control surfaces, theatre
lighting and sound systems, and most
importantly…

Keytars!

Web MIDI

MIDI sends note-on and note-off events (with
pitch and velocity), and change events for any
number of other controls.

It’s basically a well defined protocol for event
based input and output for physical buttons and
switches.

Which makes it quite exciting.

Web MIDI if (navigator.requestMIDIAccess) {
 // We have MIDI support!
}

if (navigator.requestMIDIAccess) {
 navigator.requestMIDIAccess()
 .then(success, failure);
}

We first need to request access
to MIDI devices.

This returns a promise, with a
success and failure callback.

Code sample references work by
Stuart Memo on sitepoint.com

http://sitepoint.com

Web MIDI function failure() {
 // MIDI access denied :(
}

function success(midi) {
 var inputs = midi.inputs.values();

 for (var input = inputs.next();
 input && !input.done;
 input = inputs.next()) {

 input.value.onmidimessage = messageReceived;
 }
}

If we have access to MIDI, our
success callback gets a
MIDIAccess object.

From this we can get all the
different MIDI inputs we have
access to, using an interator.

This code loops through the
inputs adding an event listener
for the onmidimessage event.

Web MIDI function messageReceived(message) {
 console.log(message.data);
}

[144, 61, 95]

[128, 61, 0]

[eventCode, note, velocity]

Now we can receive MIDI
messages! They look weird.

The format is event code, note
number, velocity.

144 is note on.

128 is note off.

Demo!

When is it useful?

Simple integration between physical devices and
the browser.

There are lots of MIDI devices and most are very
robust. Designed to be hit with sticks etc.

Perfect for children’s games, controls for those
with disabilities, kiosk applications, keytars.

When is it useful?

You can also play notes out, enabling you to play
instruments, control theatre lighting, sound
effects, video playback.

It will not give you any musical talent. Sorry.

Browser support

Play with it

Could be fun for hack projects, and controlled
environments.

Might not quite be ready for the open web until
all computers ship with keytars.

Keytars!

Phew.

HTML5 APIs

Page Visibility

Device Orientation

Battery Status

Vibration

Web Notifications

Web MIDI

Ambient Light

Geolocation

Web Audio

Web Share

Payment Request

Screen Orientation

HTML5 APIs

Clipboard

Speech synthesis

Speech detection

Media capture streams

Proximity

Network information

File & File System

Drag and drop

Fullscreen

Web workers

Thanks!
@drewm

speakerdeck.com/drewm/html5-apis-confoo-vancouver

https://speakerdeck.com/drewm/html5-apis-confoo-vancouver

