
Java
Deserialization

By Rohit Narayanan M

Serialization & Deserialization

● Serialization is the process of
packaging program-internal
object-related data in a way that
allows it to be externally stored or
transferred.

● The process of reconstructing an
object from a byte sequence is
called deserialization often referred
to as unmarshalling

Why do We do it

Serialization allows services and applications to

communicate with each other by sending data

that can be processed

Serialization is also used for caching frequently

used data

eg : Used in Sun Java web console, where a

vulnerability was found later

Serialization in java also allows to preserve

objects as different objects have different time

spans

Why is it dangerous

Magic methods get executed automatically by

the deserializer, even before deserialization

finishes!

Many serializable JDK classes implement these magic methods and call other

methods, so there’s a lot of additional “known entry points.”

HashMap

● Object.hashCode()

● Object.equals()

PriorityQueue

● Comparator.compare()

● Comparable.compareTo()

Deserialization vulnerabilities in java

For an application to be vulnerable to deserialization attacks it needs to meet two

criteria.

1. The application must accept serialized data from a location accessible to an

attacker.

2. The vulnerable class must be present on the classpath of the application

accepting serialized data

Deserialization Gadgets

A deserialization gadget is a class residing within the application code or a library, it

must be reachable by the Java class loader, the class can be used to facilitate an

attack.

Gadget classes that are present in the core Java class libraries are often referred to

as a "Golden Gadget"

Magic Methods to Gadget chains

Payload

Code

How to find it

To find deserialization vulnerabilities Look whether any serialization functions are

used and check whether we can control the data to these functions

Also if we don’t have code we can check for magic bytes 0xAc 0xEd or rO0 in the

network traffic.

When we find that we can deserialize data of our like, we search for gadget chains

Tools

Locating the gadget chains is the complex part. For that we can use tools

● Ysoserial

It is a collection of known gadget chains and exploits

● Gadget inspector

It is a Java bytecode analysis tool for finding gadget chains in Java applications or
packages.

● Joogle

Programmatically query about types/methods of the classpath

● Marshalsec

Deserialization payload generator for numerous libraries and gadget chains

Variable modification attack

It is a type of modification attack where we modifies a variable in a serialized byte stream.

We can do that using tools like serialization dumper which converts byte streams into more

human readable form and back to byte streams.

Deferred Execution Attack

It’s a type of attack where the execution of the payload is deferred, until after the deserialization
process has returned the object. So the payload is only executed after the object is destroyed by
garbage collector.

For that we can use the magic methods like finalize which is executed during garbage collection.

Polymorphism attack

It is a type of attack where polymorphism is exploited in order to have methods in

unintended objects invoked.

So if there is 2 classes User and AdminUser and AdminUser class extends User class.

Then if the attacker knows about the AdminUser class, then the he can create an

Adminuser class byte stream and pass it to deserialize and then whatever is executed as

user will be executed as AdminUser instead.

Proxy attack

It is a type of gadget chain attack, where a proxy is used to intercept methods calls to an
object, forwarding them to a abuse gadget. This can be used if no interesting methods can
be reached by magic methods in any of the Serializable classes in the application.

These are some methods which can be used for this type of attack

We can specify an argument tragetMethod in some functions, which we can give as
“exec” and for targetObject we can give any class which have Runtime.class. And
arguments as an array of Strings.

 How to prevent it

● Developer could only include libraries that are strictly necessary for the application

● If the class is not supposed to be serialized Implement magic methods by throwing a

NotSerializableException

● Do not serialize untrusted data

● Blacklisting and whitelisting

● Signing the serialized data

Parrot0x

Gadget chain found using gadget inspector

1. java/security/cert/CertificateRevokedException.readObject(Ljava/io/ObjectInputStream;)V (1)

2. java/util/Collections$CheckedMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; (1)

3. java/util/TreeMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; (0)

4. com/fword/utils/UserComparator.compare(Ljava/lang/Object;Ljava/lang/Object;)I (0)

5. com/fword/utils/UserComparator.compare(Lcom/fword/utils/User;Lcom/fword/utils/User;)I (0)

6. com/fword/utils/UtilityEval.handle(Ljava/lang/Object;)Ljava/lang/Object; (1)

7. java/lang/Runtime.exec(Ljava/lang/String;)Ljava/lang/Process; (1)

Tools

● https://github.com/frohoff/ysoserial

● https://github.com/Contrast-Security-OSS/joogle

● https://github.com/mbechler/marshalsec

● https://github.com/JackOfMostTrades/gadgetinspector

● https://github.com/ikkisoft/SerialKiller

● https://github.com/NickstaDB/SerializationDumper

https://github.com/frohoff/ysoserial
https://github.com/Contrast-Security-OSS/joogle
https://github.com/mbechler/marshalsec
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/ikkisoft/SerialKiller
https://github.com/NickstaDB/SerializationDumper

References

● https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deseriali

zation-gadget-chains-10668

● https://www.youtube.com/watch?v=MTfE2OgUlKc

● http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf

● https://frohoff.github.io/appseccali-marshalling-pickles/

● https://appsecus2018.sched.com/event/F04J

https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deserialization-gadget-chains-10668
https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deserialization-gadget-chains-10668
https://www.youtube.com/watch?v=MTfE2OgUlKc
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://frohoff.github.io/appseccali-marshalling-pickles/
https://appsecus2018.sched.com/event/F04J

