Java
Deserialization

By Rohit Narayanan M

Serialization & Deserialization

e Serialization is the process of
packaging program-internal
object-related data in a way that

, - \ , o ‘ allows it to be externally stored or

Otject ’ o BytesStream = 111 i —»| BywsStream * a | transferred.

. | ' e The process of reconstructing an
object from a byte sequence is
called deserialization often referred
to as unmarshalling

Database

Why doWedo it

Serialization allows services and applications to
communicate with each other by sending data
that can be processed

Serialization is also used for caching frequently
used data

eg : Used in Sun Java web console, where a
vulnerability was found later

Serialization in java also allows to preserve
objects as different objects have different time
spans

(x99 84 88 8()

5A FO F4 1D

SAM_VERSION

STREAM_VEIL

TC_OBJECT

classname length

‘ersionU1D

SC_SERIALIZABLE

The deseri
this value, w

number. °

The next 16 bits indic
version was used to
The TC_ OBJECT t

that has been dese

class pat
long. The hex

converted to de

VersionUID sp
versi s used. The hash is o
the NIST Secure Hash Algorithm (SHA-1)

where the first two 32 bit

This flag indicates tl

the Serializable i1

tlated ng

wre used to

This indicates the end of the data block for

the <1?']4‘»('[A

Why is it dangerous

"2!([()1.~i1‘1't

ead Resolve

lidateObject

eadObjectNoData

read External

ed during deserialization if defined in the

able class.

Invoked during deserializ if defined in the

serializable class.

Invoked during deserialization if defined in the

serializable class.

Invoked during deserialization if defined in the

serializable class.

Invoked during during garbage collection by
the garbage collector. Can be used for deferred

scution of exploitable methods.

Invoked during deserialization defined in
the able class. Defined in the

implementing the Externalizable interface.

Magic methods get executed automatically by
the deserializer, even before deserialization
finishes!

Many serializable JDK classes implement these magic methods and call other
methods, so there’s a lot of additional “known entry points.”

HashMap

Object.hashCode()
Object.equals()

PriorityQueue

e Comparator.compare()
e Comparable.compareTo()

Deserialization vulnherabilities in java

For an application to be vulnerable to deserialization attacks it needs to meet two
criteria.

1. The application must accept serialized data from a location accessible to an
attacker.

2. The vulnerable class must be present on the classpath of the application
accepting serialized data

Deserialization Gadgets

A deserialization gadget is a class residing within the application code or a library, it
must be reachable by the Java class loader, the class can be used to facilitate an
attack.

Gadget classes that are present in the core Java class libraries are often referred to
as a "Golden Gadget"

Magic Methods to Gadget chains

public class H:
private void r
int m

public class
private I
public int { public class FnEval i
IFn £ = _ jurgEnM public Object invoke (Object arg) {
return) return Runtime.exec(arg);

“@class”: “java.util.HashMap”
“members”: [

2,

{

“@class”: “AbstractTableModel$ff19274a”
__clojureFnMap: ({
hashCode: {
“@class”: “FnCompose”
£2: { “@class”: “FnConstant”, value: “/usr/bin/calc” },
£f1: { “@class”: “FnEval” }

How to find it

To find deserialization vulnerabilities Look whether any serialization functions are
used and check whether we can control the data to these functions

Also if we don’t have code we can check for magic bytes or inthe
network traffic.

When we find that we can deserialize data of our like, we search for gadget chains

Tools

Locating the gadget chains is the complex part. For that we can use tools
e Ysoserial

It is a collection of known gadget chains and exploits
e Gadget inspector

It is a Java bytecode analysis tool for finding gadget chains in Java applications or
packages.

e Joogle
Programmatically query about types/methods of the classpath
e Marshalsec

Deserialization payload generator for numerous libraries and gadget chains

Variable modification attack

It is a type of modification attack where we modifies a variable in a serialized byte stream.

We can do that using tools like serialization dumper which converts byte streams into more
human readable form and back to byte streams.

Deferred Execution Attack

It's a type of attack where the execution of the payload is deferred, until after the deserialization
process has returned the object. So the payload is only executed after the object is destroyed by
garbage collector.

For that we can use the magic methods like finalize which is executed during garbage collection.

Polymorphism attack

It is a type of attack where polymorphism is exploited in order to have methods in
unintended objects invoked.

Soif there is 2 classes User and AdminUser and AdminUser class extends User class.
Then if the attacker knows about the AdminUser class, then the he can create an
Adminuser class byte stream and pass it to deserialize and then whatever is executed as

user will be executed as AdminUser instead.

Proxy attack

It is a type of gadget chain attack, where a proxy is used to intercept methods calls to an
object, forwarding them to a abuse gadget. This can be used if no interesting methods can
be reached by magic methods in any of the Serializable classes in the application.

These are some methods which can be used for this type of attack
We can specify an argument tragetMethod in some functions, which we can give as

“exec” and for targetObject we can give any class which have Runtime.class. And
arguments as an array of Strings.

o java.lang reflect. Invocation Handler.mvokel()

o javassist.util.proxy.Method Handler invoke()

o org.jboss.weld.bean.proxy.MethodHandler.invoke()

How to prevent it

Developer could only include libraries that are strictly necessary for the application
e Iftheclassis not supposed to be serialized Implement magic methods by throwing a
NotSerializableException

private void readObject(java.io.ObjectInputStream in)
throws I0Exception, ClassNotFoundException{

throw new NotSerializableException("This class is
not intended to be deserialized");

e Do not serialize untrusted data
Blacklisting and whitelisting
e Signing the serialized data

ParrotOx

Gadget chain found using gadget inspector

java/security/cert/CertificateRevokedException.

1.
2.
3.
4.
5.
6.
7.

Object handle(
{

Object arg) {

ﬁuntime.gFtRuntime().exec((String)arg);
1;

(IOException ex) {
System.out.println("Exception in runtime.exec");
-

[\

readObject(Ljava/io/ObjectInputStream;)V (1)

java/util/Collections$CheckedMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; (1)
java/util/TreeMap.put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Obiject; (0)
com/fword/utils/UserComparator.compare(Ljava/lang/Object;Ljava/lang/Obiject;)l (O)
com/fword/utils/UserComparator.compare(Lcom/fword/utils/User;Lcom/fword/utils/User;)l (0)
com/fword/utils/UtilityEval.handle(Ljava/lang/Object;)Ljava/lang/Obiject; (1)
java/lang/Runtime.exec(Ljava/lang/String;)Ljava/lang/Process; (1)

Override
int compare(User o, User ob) {
(this.questionObj.getCategory() null) {

Manager m = this.questionObj.getCategory();
(int)m.handle((0Object) this);

Manager m = (Manager) Category() ;|
(int)m.handle((0Object) this);

Tools

https://github.com/frohoff/ysoserial
https://github.com/Contrast-Security-OSS/joogle
https://github.com/mbechler/marshalsec
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/ikkisoft/SerialKiller
https://github.com/NickstaDB/SerializationDumper

https://github.com/frohoff/ysoserial
https://github.com/Contrast-Security-OSS/joogle
https://github.com/mbechler/marshalsec
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/ikkisoft/SerialKiller
https://github.com/NickstaDB/SerializationDumper

References

e https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deseriali
zation-gadget-chains-10668

https://www.youtube.com/watch?v=MTfE20gUIKc
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://frohoff.github.io/appseccali-marshalling-pickles/
https://appsecus2018.sched.com/event/F04)

https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deserialization-gadget-chains-10668
https://www.blackhat.com/us-18/briefings/schedule/#automated-discovery-of-deserialization-gadget-chains-10668
https://www.youtube.com/watch?v=MTfE2OgUlKc
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://frohoff.github.io/appseccali-marshalling-pickles/
https://appsecus2018.sched.com/event/F04J

