
Cracking the Code to 
Secure Software

@DanielDeogun @DanielSawano

CodeEurope, Kraków, 2017



@DanielDeogun  @DanielSawano #SecureByDesign 

Daniel Deogun Daniel Sawano



@DanielDeogun  @DanielSawano #SecureByDesign 

What’s Cracking the Code… all about?

“A mindset and strategy for creating secure 
software by focusing on good design” 

- Secure by Design



@DanielDeogun  @DanielSawano #SecureByDesign 

What we’ll cover today

Solve a real security problem using good design

Immutable mutability

Detecting accidental leakage of sensitive data



@DanielDeogun  @DanielSawano #SecureByDesign 

Case 1: Cross Site Scripting (XSS)

Some website

Webform

Phone #

Input:  
+46 8 545 106 90 
or 
<script>alert(“XSS”)</script> 
 



@DanielDeogun  @DanielSawano #SecureByDesign 

Stored XSS

<script>alert(“XSS”)</script>

Alert



@DanielDeogun  @DanielSawano #SecureByDesign 

Reflective XSS

<script>alert(“XSS”)</script>

Reflective XSS
Alert

IllegalArgumentException(“<script>alert(“XSS”)</script>”)



@DanielDeogun  @DanielSawano #SecureByDesign 

2nd order XSS
<script>alert(“XSS”)</script>

Logs

Admin
Alert

Log Reader
Trust Boundary

Service



@DanielDeogun  @DanielSawano #SecureByDesign 

Technical Analysis

“Phone number” isn’t escaped properly when rendered 
on the website – hence, it gets interpreted as code!

<script>alert(“XSS”)</script>
Alert

<script>alert(“XSS”)</script>



@DanielDeogun  @DanielSawano #SecureByDesign 

Technical Solution
Escape phone number so it can be rendered as text

<script>alert(“XSS”)</script>

&lt;script&gt;alert(&ldquo;XSS&rdquo;)&lt;/script&gt;

<script>alert(“XSS”)</script>



@DanielDeogun  @DanielSawano #SecureByDesign 

Case 2: Buying -1 books

[1]

1   Secure by Design $49.99

-1   Hamlet $40.50

1   Hitchhiker's Guide to the Galaxy $30.00

Shopping Cart

Total    $39.49



@DanielDeogun  @DanielSawano #SecureByDesign 

Analysis

-1 : Integer

-1 : Integer

OrderLine {ISBN, -1}

Math Context

Webshop Context



@DanielDeogun  @DanielSawano #SecureByDesign 

But Quantity isn’t an integer…

Integers form an Abelian Group

• Closure: a + b = integer 
• Associativity: a + (b + c) = (a + b) + c 
• Commutativity: a + b = b + a 
• Identity: a + 0 = a 
• Inverse: a + (−a) = 0

Quantity

• a concept that’s well defined 
with strict boundaries 

• not closed under addition 
• cannot be negative



@DanielDeogun  @DanielSawano #SecureByDesign 

Domain Primitives

“A value object so precise in its definition that it, by its mere 
existence, manifests its validity is called a Domain Primitive.”

- Secure by Design

• Can only exist if its value is valid 
• Building block that’s native to your domain 
• Valid in the current context 
• Immutable and resemble a value object in DDD



@DanielDeogun  @DanielSawano #SecureByDesign 

Quantity as a Domain Primitive

public final class Quantity { 
   private final int value; 

   public Quantity(final int value) { 
      inclusiveBetween(1, 99, value); 

      this.value = value; 
   } 

   //Domain specific quantity operations... 
}



@DanielDeogun  @DanielSawano #SecureByDesign 

Invalid quantities are rejected

-1 : Integer

Quantity: {1 - 99}

OrderLine {ISBN, Quantity}

Math Context

Webshop Context

Only valid quantities are 
accepted

Rejected



@DanielDeogun  @DanielSawano #SecureByDesign 

Domain Primitives  
tighten your design

Domain Primitives tighten your design by 
explicitly stating requirements and assumptions. 

They also make it harder to inject data that 
doesn’t meet the expectations. 

Let’s see if this pattern allows us to address XSS 
attacks implicitly.



@DanielDeogun  @DanielSawano #SecureByDesign 

We want to prevent invalid 
phone numbers…

Webform

Phone #

Input:  
+46 8 545 106 90 
or 
<script>alert(“XSS”)</script> 
 

Alert

public void register(final String phoneNumber) {
    // Register phone number logic
}



@DanielDeogun  @DanielSawano #SecureByDesign 

But String Accepts Anything!

Input:  
+46 8 545 106 90 
or 
<script>alert(“XSS”)</script> 
 

public void register(final String phoneNumber) {
    // Register phone number logic
}

Could be anything! Attackers look at this

Developers mostly look at this to 
understand the intention



@DanielDeogun  @DanielSawano #SecureByDesign 

Use a Domain Primitive Instead

Input:  
+46 8 545 106 90 
or 
<script>alert(“XSS”)</script> 
 

public void register(final PhoneNumber phoneNumber) {
    // Register phone number logic
}

Can only be valid phone numbers 
by definition!

!



@DanielDeogun  @DanielSawano #SecureByDesign 

Domain Primitives “prevent” XSS

The PhoneNumber domain primitive enforce domain rule validation at 
creation time.  

This reduces the attack vector to data that meets the rules in the 
context where it’s used.  

<script>alert(“XSS”)</script> doesn’t meet the rules and is 
rejected by design. 

But what about escaping – do we need it?



@DanielDeogun  @DanielSawano #SecureByDesign 

But…

[5

… what about performance?

[3

… it becomes a lot of classes!

… isn’t it overly complex?

[4



@DanielDeogun  @DanielSawano #SecureByDesign 

What we’ll cover today

Solve a real security problem using good design

Immutable mutability

Detecting accidental leakage of sensitive data

!



@DanielDeogun  @DanielSawano #SecureByDesign 

CIA

Confidentiality – data must only be disclosed to authorized users 

Integrity – data modification is only allowed in an authorized manner 

Availability – data must be available when needed 

[



@DanielDeogun  @DanielSawano #SecureByDesign 

Availability and Mutable State

Mutable state makes it difficult to apply horizontal scaling of 
an application. 

Ensuring availability along with mutable state is hard. 

So, is there a design pattern that both facilitates availability 
and mutability?



@DanielDeogun  @DanielSawano #SecureByDesign 

Design Stereotypes in DDD

Value objects are immutable objects that don’t have a conceptual 
identity – we only care about its value, e.g. a business card or a $100 bill. 
We replace value objects with Domain Primitives to make them secure. 

Entities are objects that aren’t identified by their attributes, but rather by 
their identity and lifespan – for example, a customer or a court case. 



@DanielDeogun  @DanielSawano #SecureByDesign 

How should we represent  
an Order?

An order may change state 
(open, closed, paid, etc). 
  
Should it be an entity or 
domain primitive? 

How can we solve the 
problems that comes with 
mutability?

1   Secure by Design $49.99

1   Hamlet $40.50

1   Hitchhiker's Guide to the Galaxy $30.00

Shopping Cart

Total    $120.49



@DanielDeogun  @DanielSawano #SecureByDesign 

Entity Snapshots

Entities are often mutable by design, but we don’t need to implement it 
as a mutable object in code. 

If we separate mutating operations from read operations, the 
representation of an entity can be immutable. 

This makes the entity “look” like a Domain Primitive that facilitate 
availability and scalability! 



@DanielDeogun  @DanielSawano #SecureByDesign 

Order as an Entity Snapshot

Entity Snapshot

Entity Snapshots

Change Entity

OrderUpdateServiceOrderReadService



@DanielDeogun  @DanielSawano #SecureByDesign 

Order as a Mutable Entity
public final class Order { 

    private final OrderId id; // entity id 
    private final List<OrderItem> orderItems = new ArrayList<>(); 

    public Order(final OrderId id) { 
        this.id = notNull(id); 
    } 

    public void addItem(final OrderItem item) { 
        orderItems.add(notNull(item)); 
    } 

    public List<OrderItem> orderItems() { 
        return orderItems; 
    } 

    public OrderId id() { 
        return id; 
    } 

    // ... 
}



@DanielDeogun  @DanielSawano #SecureByDesign 

Order as an Entity Snapshot
public final class Order { 

    private final OrderId id; // entity id 
    private final List<OrderItem> orderItems; 

    public Order(final OrderId id, final List<OrderItem> orderItems) { 
        noNullElements(orderItems); 
        notNull(id); 
        this.id = id; 
        this.orderItems = unmodifiableList(new ArrayList<>(orderItems)); 
    } 

    public List<OrderItem> orderItems() { 
        return orderItems; 
    } 

    public OrderId id() { 
        return id; 
    } 

    // ... 

}

Domain rules enforced 
in constructor



@DanielDeogun  @DanielSawano #SecureByDesign 

Updating an Order

final OrderId id = ...; 
final OrderItem item = ...; 

orderUpdateService.addItemToOrder(id, item); // Async update 



@DanielDeogun  @DanielSawano #SecureByDesign 

But…

[5]

… what about performance? … isn’t it overly complex?

[4]



@DanielDeogun  @DanielSawano #SecureByDesign 

Entity Snapshots

- Removes many of the issues with mutable state such as 
- Availability 
- Consistency 

- Gets all benefits from Domain Primitives



@DanielDeogun  @DanielSawano #SecureByDesign 

What we’ll cover today

Solve a real security problem using good design

Immutable mutability

Detecting accidental leakage of sensitive data

!
!



@DanielDeogun  @DanielSawano #SecureByDesign 

Accidental Leakage

Typical causes: 
• Logs 
• Session persistence 
• Evolving domain model



@DanielDeogun  @DanielSawano #SecureByDesign 

Evolving domain model

User 
- name 
- nickname 
- age

User 
- name 
- nickname 
- age 
- SSN

Remodeling



@DanielDeogun  @DanielSawano #SecureByDesign 

Read-once Object
public final class SensitiveValue implements Externalizable { 

   private transient final AtomicReference<String> value; 

   public SensitiveValue(final String value) { 
      // Check domain-specific invariants 
      this.value = new AtomicReference<>(value); 
   } 

   public String value() { 
      return notNull(value.getAndSet(null), "Sensitive value has already been consumed"); 
   } 

   @Override 
   public String toString() { 
      return "SensitiveValue{value=*****}"; 
   } 

   @Override 
   public void writeExternal(final ObjectOutput out) { 
      throw new UnsupportedOperationException("Not allowed on sensitive value"); 
   } 

   @Override 
   public void readExternal(final ObjectInput in) { 
      throw new UnsupportedOperationException("Not allowed on sensitive value"); 
   } 
}



@DanielDeogun  @DanielSawano #SecureByDesign 

What we’ll cover today

Solve a real security problem using good design

Immutable mutability

Detecting accidental leakage of sensitive data

!
!
!



@DanielDeogun  @DanielSawano #SecureByDesign 

Summary
Many security weaknesses can be avoided using Secure by Design 

- Domain Primitives
- significantly reduce the attack surface 
- facilitate security in depth 
- reduce the risk of injection attacks 

- Entity Snapshot
- immutable 
- takes on similar properties of a domain primitive 
- facilitate availability and scalability 

- Read-once objects
- detects accidental data leakage



@DanielDeogun  @DanielSawano #SecureByDesign 

bit.ly/secure-by-design

40% Discount Code for Code Europe! ctwcodeeu17



@DanielDeogun  @DanielSawano #SecureByDesign 

QA

[2]



@DanielDeogun  @DanielSawano #SecureByDesign 

References
• [1] https://www.flickr.com/photos/stewart/461099066 by Stewart Butterfield under license https://creativecommons.org/licenses/by/2.0/ 

• [2] https://flic.kr/p/9ksxQa https://creativecommons.org/licenses/by-nc-nd/2.0/ 

• [3] https://flic.kr/p/2pvb2T https://creativecommons.org/licenses/by/2.0/  

• [4] https://flic.kr/p/7Ro4HU https://creativecommons.org/licenses/by/2.0/ 

• [5] https://flic.kr/p/eGYhMw https://creativecommons.org/licenses/by/2.0/  

• [6] CIA, https://goo.gl/images/DRzRcp

https://creativecommons.org/licenses/by/2.0/
https://flic.kr/p/9ksxQa
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://flic.kr/p/2pvb2T
https://flic.kr/p/7Ro4HU
https://goo.gl/images/DRzRcp

