

Baruch Sadogursky - @jbaruch

× Developer Productivity Advocate
× Gradle Inc
× Development -> DevOps -> #DPE

Eli Aleyner - @ealeyner

× Co-founder
× AtomicJar Inc
× Founding team @AWS
× Founding team @Bing.com

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

Don’t ruin the flow

“The build takes forever, I
am distracted to do other

things and the context
switch is terrible”

Don’t frustrate
the developers

“we have a flanky test, it is
irrelevant 99.5% of the
time , but it always runs

and it is last in the suite"

Don’t boil the frog

“I have a feeling that
everything is slower

somehow…”

Developer Productivity == A/M/P == motivation

Autonomy Tools and people aren’t in my way

Mastery Tools and processes help me to
excel

Purpose I want to be productive, i.e. create
the product

Developer productivity Engineering!

Developer Productivity Engineering

Foster Faster Feedback

Eliminate Toil for
Developers

Collaborate through
Effective Tooling

Prioritize Automation
and Eliminate
Bottlenecks

Embrace Rigorous
Observability for

Proactive Improvement

Dedicated
Organizational Mindset

Outcomes Over Output

Talk is cheap,
show me the
goods!

22

Small DPE improvements make a huge difference
× Generate code faster: Better IDE
× Test better: Testcontainers
× Enforce better code: Sonar
× Test more reliably: Flaky test detection
× Foster Faster Feedback:

feedback efficiency

× IDE: Sub-seconds (I type, it marks it red)
× Build: Seconds
× CI: Minutes
× Production: Hours/Days

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected Real

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

It is slow!

It is slow and the developers have no idea why!

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What is build?

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What can go wrong?

At any time.

When can it go wrong?

The Build frustrates
the developers

Let’s ask Chatgpt

What the actual f*ck?!

× Skipping tests defeats the purpose of
the build!

× How about skipping compilation?
× We want faster feedback, not less

feedback

What feedback do we want?

Ci/cd pipeline quality gates

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Two types of feedback

x e.g., CI/CD
x we never wait for it
x results are distracting

x e.g., build
x we’ll wait for it in the flow
x we’ll be pissed off when it’s slow

Fe
ed

ba
ck

 T
im

e

Distance from Developers

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

synchronous asynchronous

Commit time

Ideal build time feedback

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Delightful build (pick two):

☑ provides max feedback
☑ fast

Skip what can be skipped
(but no more!)

Avoidance: Incremental build

× Don’t build what didn’t changed
× Don’t build what isn’t affected

Avoidance: Incremental build shortcomings

× Relies on produced artifacts
× Relies on architectural desicions

Avoidance: Caching

× Makes the build faster
× Makes the build faster for everybody
× Makes the build faster always
× Makes all parts of the build faster

Avoidance: Predictive test selection

× Learns code changes effects de-facto
× Skips tests with

high degree of confidence

Speed up what
can’t be skipped

Test parallelization

× Use max power of local machine
× (Yes, your boss should buy you the

bleeding edge)

Test distribution

× CI uses fan-out to speed-up tests
× Shouldn’t you enjoy it for local tests?
× Use the cloud to distribute test load
× RUN ALL THE TESTS!

Why not just using ci fan-out?

× Relying on shared CI infrastructure
× CI infrastructure is not optimized for

real-time feedback!
× Are the agents as fast as they can

be?

Don’t let it slide

Observe and improve

× Measure local build times across
time and environments

× Detect downfacing trends
× Find root causes and improve

Same tradeoff for tests

expensive, slow, but prod-like
Or
naïve, useless, but fast

CI often depends on Staging environments

But fixing staging environments is just “faster horses”

project maturity

Cost of maintaining
Staging Environment based tests increases

as projects mature

project maturity

Value of Staging Environment tests degrades over time
as they become longer to run, provide flaky outcomes,

while still sitting
too far from Software Development Lifecycle

Modern Infrastructure
Has Made Testing Harder For Developers

Unit tests with real dependencies

The Testcontainers Experience

Testcontainers is an open source framework for
providing throwaway, lightweight instances of databases, message brokers,
web browsers, or just about anything
that can run in a Docker container.

Unit Tests with
Real Dependencies

GenericContainer redis = new GenericContainer(“redis:5.0.3-alpine”)

.withExposedPorts(6379)

Testcontainers is an open source framework
for providing throwaway, lightweight instances
of test dependencies.

Testcontainers is used by

Test against any database, message broker, browser…
or just about anything that runs in a Docker container!

testcontainers.com/modules

Testcontainers libraries exist for all popular languages including
Java, Go, .NET, NodeJS, and more.

Java Go .NET Node.js

Python Rust Haskell Ruby

Testcontainers Desktop is the free companion app
to open source Testcontainers libraries.

Simple Local
Development with
Real Dependencies

Debug your Testcontainers-
powered dependencies

The app lets you proxy any
service to a fixed port to easily

inspect it with your favorite
debugging tools.

Track and analyze
your test sessions

Dashboards that provide you
and your team with insights
into your development and

testing patterns.

Switch container runtimes
and

burst to the cloud

With Testcontainers Cloud, you
can even run them in the cloud
on demand, while saving your

local resources.

Testcontainers Desktop
The free companion app.

Testcontainers Cloud:
Test without limits. Ship with confidence.

Developer-first
Testing

Test everything on your laptop
without worrying about

resources; no local docker
daemon needed

Effortlessly
Fast CI

Run your ever-growing test suite
without scaling your CI, and

speed it up by running tests in
parallel

Reliable
Test Suites

Enhance team efficiency by
getting rid of flaky tests and

ensuring consistency from dev to
CI

How it works

The gains are real!

Learn more and try it today!
× Take the Gradle/Maven Speed

Challenge!
× Be DPE Agent of Change!
× Read the DPE Handbook!
× Watch the DPE Summit videos!

x speaking.jbaru.ch

