
Less, but better.

Dieter Rams

“Good design is as little as possible.  
Less, but better. 
Simple as possible but not simpler.”

The complexity is in our builds,
not in the platform.

Zooming out

How long should our projects last?

How long should our skills last?

HTML - 28 years

 Vite - 1 year

HTML

Vite

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

jQuery React (class)
Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite

React (func)

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite

jQuery React (class) React (func)

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite

jQuery React (class) React (func)

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite

jQuery React (class) React (func)

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite
Yarn

Underscore Lodash
CRA

Gatsby
Angular

Jade/Pug

Storybook

Elm D3

{ } { } { }
{ }{ }

{ }
{ }

jQuery React (class) React (func)

HTML
Server lore

CSS
PHP

Bash/Shell
JavaScript

Python + PIP
Selenium Nightwatch Puppeteer Playwright Cypress

Qunit Jasmine Jest + Enzyme NTR
Bower Grunt

NodeJS + NPM

Gulp Webpack Vite
Yarn

Underscore Lodash
CRA

Gatsby
Angular

Jade/Pug

Storybook

Elm D3

{ } { } { }
{ }{ }

{ }
{ }

Fatigue Zone

Stable Zone
jQuery React (class) React (func)

Volatility is expensive

Old sales saying

“Nobody wants a drill. 
What they want is the hole.”

By the pricking of my thumbs,
a new web era this way comes

Eras

HTML
Mid 1990s

Server 
HTML

HTML SSR
Mid 1990s Early 2000s

Server 
HTML

Server 
HTML 
CSS 
JS

HTML SSR DOM/Ajax
Mid 1990s Early 2000s Mid 2000s

Server 
HTML

Server 
HTML 
CSS 
JS

Server 
HTML 
CSS 
jQuery 
E2E tests

HTML SSR DOM/Ajax SPA
Mid 1990s Early 2000s Mid 2000s Mid 2010s

Server 
HTML

Server 
HTML 
CSS 
JS

Server 
HTML 
CSS 
jQuery 
E2E tests

Cloud infrastructure 
CI/CD pipelines 
Package managers 
HTML 
CSS 
Typescript 
React 
React tests 
E2E tests

Eras all the way down

• Plugin content - Applets, Flash, Silverlight

• Mobile formats - WAP, WML, iHTML, AMP

• Content - broadcast, mashup, syndication, walled garden, paywall, AI

Our roles across eras

HTML

Business Logic

UI Frontend

Backend

HTML SSR

Business Logic Business Logic

UI UI

Templating (SSR)

Frontend

Backend
Frontend (in server-side languages)

HTML SSR

Business Logic Business Logic

UI UI

Templating (SSR)

DOM/Ajax

Business Logic

UI

Templating (SSR)

Frontend

Backend
Frontend

HTML SSR

Business Logic Business Logic

UI UI

Templating (SSR)

DOM/Ajax

Business Logic

UI

Templating (SSR)

Business Logic (JavaScript)

SPA

UI

Templating (JavaScript)

Business Logic

Business Logic (JavaScript)

SPA

UI

Templating (JavaScript)

Business Logic

Business Logic (JavaScript)

SPA

UI

Templating (JavaScript)

Business Logic

Frontend of the frontend

Backend of the frontend
GenX of frontend

Backend! Only backend! Nice pure backend!

Business Logic (JavaScript)

SPA

UI

Templating (JavaScript)

Business Logic

Full stack

Full stack
Full stack

Full stack

Business Logic on server

UI

Business Logic in client

Frontend

Backend

Backend

UX & Design Design

Data

Templates on server Frontend

Data

Content Tech Writer

HTML SSR

Business Logic Business Logic

UI UI

Templating (SSR)

DOM/Ajax

Business Logic

UI

Templating (SSR)

Business Logic (JavaScript)

SPA

UI

Templating (JavaScript)

Business Logic Business Logic?

Templating (SSR)?

UI?

Streamed SSR?

Every era shapes the next

Frustrations drive innovation

• Repetition and low maintainability → templating, SSR, CSS

• Desire for rich designs → DOM scripting, improved media and fonts

• Dislike of C in CSS → CSS layers, scope, shadow DOM

• Desire to escape algorithms → fediverse, cozyweb

Frameworks shape the platform

• jQuery → vanilla JS features like queryselector, forEach and fetch

• SASS → vanilla CSS features like custom props

• CSS-in-JS → vanilla CSS features like scope, layers, and shadow DOM

Frameworks shape the platform

• JavaScript → jQuery → JavaScript (ES6)

• CSS → SCSS → CSS

• Coffeescript → Typescript → …?

You only get the benefit if you use
the new features of the platform.

Beware of the
familiarity
comfort

zone

My own dream of a simpler web

Quantium's UI library

This picture is a lie.

Industry-endorsed tooling
only lasted five years.

Never fear, people had
suggestions!

JSR!

PNPM!

Deno!Bun! Lerna!

Nx!

Turborepo!

Go back to
Storybook!React Test

Library!

Einstein did not actually say this

“The definition of insanity is doing the same thing
over and over again and expecting a different
result.”

Reduce risk, add simplicity

Ten parts at 95% reliability

~40% chance of failure
0.95^10 = 0.5987

More dependencies = more risk

Dependency risks

• Bad license

• Missing entirely

• Package compatibility clash

• Runtime compatibility clash

• Breaking changes

• Deprecation or EOL

• Security compromised

• Abandonware

Not all dependencies are equal

• Why use an intermediary when you can just call the CLI?

• If you only use one function, why load a whole library?

• Why load a whole library for minor features?

Adding simplicity

The baseline is full of features!

• Shell, Node and Python scripting

• NPM and PIP for packages

• NPM Workspaces

• NodeJS Test Runner for unit tests

• Cypress for component, E2E and accessibility tests

• And of course the web platform itself - HTML, CSS, JS

Principles

• Use as little as possible

• Choose native where possible

• Make unproven technology as fungible as possible

Hard “no”

• Powershell

• Yarn, Webpack, Gulp, Babel

• Monorepo tools

• Intermediary libraries

• React-specific test frameworks

• Gatsby

Additions

• Vite for docs and React test fixtures

• SCSS for our design token integration

• STMUX to run things in parallel

• onchange for hot reloading

• Plus the actual executables like SASS, Stylelint, etc

/

/apps

/dashtest

/docs

/reacttest

/packages

/core

/dash

/react

/tests

Remaining complexity

• I really wish NPM run would build in a watcher

• Extracting TS definitions remains disappointingly difficult

• SCSS may still go, we barely need it

• Github Actions is intrusive, we may push more to shell scripts

• Building Dash is a bit niche and strange, but probably not of concern to many

So… do we like it?

Before

• 5610 dependencies (!!!)

• ~5-10 minute first-time setup

• ~1-2 minutes to start

After

• 1525 dependencies (-72%)

• ~2-3 minute first-time setup (-70%)

• ~25-30 seconds to start (-50%)

Less,

• 72% less dependencies

• 70% less build time

• 50% less start time

but better.

• All existing functionality maintained

• New components added

• Massively improved test coverage

Best of all…

Contributors no longer waste
hours getting the project to run.

They ship work that makes a
difference to customers.

What’s next?

CSS & HTML patterns

React Templates

React Tests

React API

Dash Templates

Dash API

Angular Templates

Angular API

CSS & HTML patterns

React Templates

React Tests

React API

Dash Templates

Dash API

Angular Templates

Angular API

Rshiny!HTMX!
Vue!

Svelte! Web components?

Streamlit!

You’ll never guess which new
and shiny thing I proposed!

A business case
for web components

Considerations for tech choices

• Strength of solution and its ecosystem

• Security and licensing

• Cost to buy

• Cost to migrate/roll out

• Cost to maintain

• Cost of training

• Impacts to hiring and onboarding

• …and how long before you ask me to approve all of this all over again?

Web components

• Ecosystem - the web ✅

• License - free ✅

• Migration - incremental ✅

• Longevity - possibly indefinite ✅

You can keep your current framework.

You can support multiple frameworks.

This choice is the lowest risk you can
offer to build and maintain a UI layer.

CSS & HTML patterns

React Templates

React Tests

React API

Dash Templates

Dash API

Angular Templates

Angular API

NewShiny Templates

NewShiny API

NewShiny TestsDash Tests Angular Tests

CSS & HTML patterns

React API Dash API Angular API NewShiny API

Web Components

Web Component tests

CSS & HTML patterns

Framework Templates

Framework Tests

Framework API

Framework Templates

Framework Tests

Framework API

CSS & HTML patterns

Framework API Framework API

Web Components

Web Component Tests

Framework API

Web Components

Framework SPA

Framework Component

HTML SSR DOM/Ajax SPA
Mid 1990s Early 2000s Mid 2000s Mid 2010s

Native web?
Mid 2020s

Antoine de Saint-Exupéry

“Perfection is achieved,
not when there is nothing more to add,
but when there is nothing left to take away.”

Ben Buchanan / 200ok.blog / @200ok@mastodon.social

Less, but better.

