
Understanding Resource Priorities
Andy Davies ∙ Sep 2020

https://www.flickr.com/photos/volvob12b/8096363022

Ever wondered why pages load in the order they do?

Ever wondered why pages load in the order they do?

…I often do too!

Prioritisation helps fetch the content in the most efficient order

Several factors affect how resources are prioritised

- Browser

- Network Conditions

- Server / CDN

- Protocol

- Content Type

- Markup and Page Construction

The browser is where it all starts…

HTML is parsed incrementally, but…   

Synchronous script elements block the parser until

 - script has loaded and executed

 - pending stylesheets have loaded

Stylesheets block rendering of content below them

Some resources are discovered late

Fonts and background images - when the render tree is built

Script injected resources - when the script executes

@imported stylesheets - when the outer stylesheet is parsed

High Low

Priority

Prefetches

Stylesheets

Blocking
Scripts Preloads Visible

Images

Images

Non-Blocking
Scripts

Fonts

Render or parser blocking resources get higher priority

Some content is useful even when we only have part of it

HTML

Can incrementally parse the HTML looking for new elements, resources to
fetch etc.

Bitmap Images

Size information can be extracted, can be rendered progressively (even if
that’s by scan line)

For other content we need it all

Styles

Whole stylesheet needs to be downloaded to build CSS Object Model

Scripts

Whole script is needed before it can be executed (can be parsed
incrementally in some browsers)

Fonts
Whole font is needed before it can be applied

What does this look like in an actual browser?

Chrome prioritises resources in the <head>*

Chrome prioritises resources in the <head>*

Requests for resources referenced
in the <body> are delayed until

ones in <head> complete

“The Stair Step”

Chrome prioritises resources in the <head>*

Parser and render blocking resources at the
bottom of the body get higher priorities than
you might expect

 <script src="js/main.js"></script>
 <link type="text/css" rel="stylesheet" href="css/bottom.css"/>
 </body>

Chrome prioritises resources in the <head>*

Non-parser blocking scripts in the head are
loaded as part of the second phase

 <script src="js/dummy-js-async.js" async></script>
 <script src="js/dummy-js-defer.js" defer></script>
 </head>

Firefox does things a little differently

Chrome adapts its approach for slower networks

Fonts are loaded with an IDLE
priority and don’t block rendering

Prioritisation in HTTP/1.x vs HTTP/2

HTTP/1.x

Browser builds a list of resources in priority order

6 TCP connections per origin (can be more or less than 6)

When a connection becomes free… requests next highest priority resource in list

Prioritisation in HTTP/1.x vs HTTP/2

HTTP/1.x

Browser builds a list of resources in priority order

6 TCP connections per origin (can be more or less than 6)

When a connection becomes free… requests next highest priority resource in list

Browser is in control

Prioritisation in HTTP/1.x vs HTTP/2

HTTP/2

Requests are sent to the server

Relative priority and dependency information attached to request

Priority information can be updated

Each connection has it’s own set of priority information and is unaware of others

Browser expect servers to fulfil requests in the priority provided

Content from different origins will compete for the network

https://www.flickr.com/photos/39908901@N06/7834345230

Chromium
(Linear List)

Safari
(weighted)

Firefox
(Groups)

Browsers adopt different approaches to H2 prioritisation

https://github.com/quicwg/wg-materials/raw/master/interim-19-05/priorities.pdf

And some servers / CDNs ignore it…

And some servers / CDNs ignore it…

And some servers / CDNs ignore it…

https://ishttp2fastyet.com

Pat Meenan created a test case and we catalogued the results

The Good…

Almost everyone else has broken HTTP/2 prioritisation

!

Fonts are stuck behind
lower priority requests

And it has real world impact

<link rel="preload" href=“...” as="font" crossorigin/>

…to the rescue?

Inert, high priority fetch

Ideally the fonts would be
fetched here

Safari does this but Chrome
doesn’t due to AppCache delay

Preload is a tradeoff

Preload is a tradeoff

Preload is a tradeoff

Using a known good CDN or server is always better

When we explicitly increase the priority of one resource
we implicitly decrease the priority of others

Being selective about what you preload

<link rel="preload" as="script" href="a.js" />

<script async src="a.js"></script>

You may also see it used in ‘hacks’ that boost priority

https://wicg.github.io/priority-hints/

Priority Hints is a proposal to allow finer control of priority

Sometimes seemingly simple changes can have
performance implications

<link rel="prefetch" href=“...” as="image"

Inert, low priority fetch for resources
likely to be used in the future

Resource fetches required for the next navigation SHOULD have
lower relative priority and SHOULD NOT block or interfere with
resource fetches required by the current navigation context.

https://www.w3.org/TR/resource-hints/

Prefetch requests dispatched early
with low priority
Server with poor prioritisation
responds and delays responses for
higher priority requests

(By default prefetch isn’t enabled in Safari ATM)

Mix of Safari and poor server prioritisation delays key content

Firefox waits until onload before dispatching prefetches

Chrome delays prefetches but still danger of contention

Chrome delays prefetches but still danger of contention

Safari issue affects prefetch directives inserted early in
markup

Directives inserted later e.g. by guess.js or instant.page
are less likely to be affected

What if a Service Worker made your site slower?

Competition can come from surprising sources!

Competition can come from surprising sources!

Competition can come from surprising sources!

1

1

2

1

2

3

<meta http-equiv="Expires" content="-1" />
<script>
 if ('serviceWorker' in navigator) {
 navigator.serviceWorker.register('/sw.js', {scope: '/'}).then(function(reg) {
 if (reg.installing) {
 console.warn('[SW] installing');
 } else if (reg.waiting) {
 console. warn ('[SW] installed');
 } else if (reg.active) {
 console. warn ('[SW] active');
 }
 }).catch(function(error) {
 console.error('[SW] Registration failed', error);
 });
 }
</script>
<link rel="StyleSheet" type="Text/css" href="Css/shared.css?v=48">

Service Worker is registered
in the head of the page

Service Worker Registration

HTML Page

Service Worker Service Worker requests
compete with other requests
for network bandwidth

if ('serviceWorker' in navigator) {
 window.addEventListener('load', function() {
 navigator.serviceWorker.register('/sw.js').then(function(registration) {
 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ', registration.scope);
 }, function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 });
}

https://developers.google.com/web/fundamentals/primers/service-workers/

This example delays creating the Service
Worker until load event fires for window

An alternative approach

if ('serviceWorker' in navigator) {
 window.addEventListener('load', function() {
 navigator.serviceWorker.register('/sw.js').then(function(registration) {
 // Registration was successful
 console.log('ServiceWorker registration successful with scope: ', registration.scope);
 }, function(err) {
 // registration failed :(
 console.log('ServiceWorker registration failed: ', err);
 });
 });
}

https://developers.google.com/web/fundamentals/primers/service-workers/

This example delays creating the Service
Worker until load event fires for window

This might be ok for a traditional page

But is the load event an appropriate tigger
in the context of a Single Page App?

An alternative approach

There are other ways we can influence priority too

Bundling and inlining can override priorities

base64 encoded image within a
script

“A low priority resource within a
high priority one”

https://www.flickr.com/photos/lantzilla/29842854

http://www.flickr.com/photos/7671591@N08/1469828976

Ultimately, there is only a single ‘last mile’ connection

https://www.flickr.com/photos/justinknol/6402733575

Self-host 3rd-party libraries and unshard domains

https://www.flickr.com/photos/elsiehui/15599408558

Where possible stick to the default priorities

If you want to intervene in the priority… test, test and test again

https://www.flickr.com/photos/benjreay/14713228051

See something that doesn’t make sense… Ask Why?

https://www.flickr.com/photos/eltpics/7754659726

Raise bugs. Request Features

Emily Hayman, SmashingConf London 2018

http://www.flickr.com/photos/auntiep/5024494612

@AndyDavies

hello@andydavies.me

https://noti.st/andydavies

