GOURMET
SERVICE OBJECTS™

he very thinnest of classes

PRI 5 VE SERVICES

LD

Resources
A collection of attributes that models some data/state
Can touch the database — but doesn't have to (ActiveModel rocks)

May Include associations, scoping, and so on

SERVICES

Never resources

Simple!

» No attributes, no accessors, no internal state
* [hus no need for instances!

SEthOd object — do-ers

Can be universal — “pure functions”

e INATLURE OF A SERVIESS

& Gleali(lc short)

f oS onc thing

e i dcpena on context
- Call from anywhere

- Few object dependancies (it any)

L adenicy/ (nject 1T there Is one (more |ater)

» Composable

ECURMET SERVICES

§Hias only one method (::call)

* De facto stanc

dlC

because same as DI”OCS, methocs,

» [akes args={}, or named params

» Dependancy Inject all of the things!

* 1.e..when calling outside objects, give the user the o

call to a different object of the same duck type

elc

btion to overric

e with a

SEVICES DIREC IR

* |t's even bullt Into Ralls!

» app/services Is automagically included
» Models live In app/models
» Services live In app/services
» No need for Persistence namespace (shouldnt matter where the data comes from)

» Separates services from models (easier to read)

SERVICES LAY e

* A glance at the services directory shows all the things the app does

» Contextual, semantic, easy to know what it does from the outside

 ScheduleAction
« BlockAccount
 SendReminder

 LaunchMissiles

Bh AR IS i

50 Valid i

app/services/accept_invite.rb i
class Acceptlnvite s 3
def self.call(args = {}) |
invite = args.fetch(:1nvite)
user = args.fetch(:user)

invite.call(user)
UserMailer.1invite_accepted(invite) .deliver
end
end

Somewhere else
AcceptInvite.call(user: chuck_norris, i1nvite: party_time)

FONTRIVED SUPERBOLT EXAEEE

class Email: :SendAdminSample
def self.call(params = {})
fail unless params[:emalls].present?

Delegate to Advocato

delegator = params.delete(:delegator) || Superbolt::Advocato::Enqueue
delegator.call(params)
end

end

L P OsHIC

& ratherthan 1s-a

* Single responsibility (by design)
» Open/closed (from the perspective of a composed object)

» Composition moves towards concretion

» Doesn't Inherit or depend on unused methods

» Create hierarchies on the fly

ENCOCK-ON ERFECES

* Etasy to name, because 1t does one thing

« Adds context to code

§ 1 0 semantic space of names and convention

§ Siiccinct and clear

» Highly reusable (DRY)

e @@l@ o

* Does one thing
* Few dependancies (by design)
» |solated unit tests stub any calls to outside objects

» SOLID decoupling by design

& b} ais

-ncapsulate asynchronicity

» Workers

» Superbolt gueueing/fetching

Hold common regexes (can compose them too)

On the more radical end, can move all verbs into services to create a “behaviour layer”

And morel!

FURTHER REALINES

« Gourmet

» http://brewhouse.io/blog/20 14/04/30/gourmet-service-objects.ntmi

» https://gist.eithub.com/pcreux/92 /7929

* http://www.reddit.com/r/rails/comments/24n5s2/gourmet_service_objects/

s Reoular

» http://blog.codeclimate.com/blog/2012/10/1///-ways-to-decompose-fat-activerecord-models/

» http://stevelorek.com/service-objects.html

» http://jamesgolick.com/2010/3/14/crazy-heretical-and-awesome-the-way-I-write-rails-apps.htmi

