
GOURMET
SERVICE OBJECTS™

The very thinnest of classes

MODELS VS SERVICES

MODELS

• Resources

• A collection of attributes that models some data/state

• Can touch the database — but doesn’t have to (ActiveModel rocks)

• May include associations, scoping, and so on

SERVICES
• Never resources

• Simple!

• No attributes, no accessors, no internal state

• Thus no need for instances!

• “Method” object — do-ers

• Can be universal — “pure functions”

THE NATURE OF A SERVICE
• Clean (ie: short)

• Does one thing

• Doesn’t depend on context

• Call from anywhere

• Few object dependancies (if any)

• Dependency inject if there is one (more later)

• Composable

GOURMET SERVICES
• Has only one method (::call)

• De facto standard because same as Procs, methods, etc

• Takes args={}, or named params

• Dependancy inject all of the things!

• i.e.: when calling outside objects, give the user the option to override with a
call to a different object of the same duck type

SERVICES DIRECTORY
• It’s even built into Rails!

• app/services is automagically included

• Models live in app/models

• Services live in app/services

• No need for Persistence namespace (shouldn’t matter where the data comes from)

• Separates services from models (easier to read)

SERVICES LAYER
• A glance at the services directory shows all the things the app does

• Contextual, semantic, easy to know what it does from the outside

• ScheduleAction

• BlockAccount

• SendReminder

• LaunchMissiles

EXAMPLES

EXAMPLE
app/services/accept_invite.rb
class AcceptInvite
 def self.call(args = {})
 invite = args.fetch(:invite)
 user = args.fetch(:user)

 invite.call(user)
 UserMailer.invite_accepted(invite).deliver
 end
end

Somewhere else
AcceptInvite.call(user: chuck_norris, invite: party_time)

CONTRIVED SUPERBOLT EXAMPLE

class Email::SendAdminSample
 def self.call(params = {})
 fail unless params[:emails].present?

 # Delegate to Advocato
 delegator = params.delete(:delegator) || Superbolt::Advocato::Enqueue
 delegator.call(params)
 end
end

COMPOSITION
• “has-a” rather than “is-a”

• Single responsibility (by design)

• Open/closed (from the perspective of a composed object)

• Composition moves towards concretion

• Doesn’t inherit or depend on unused methods

• Create hierarchies on the fly

KNOCK-ON EFFECTS
• Easy to name, because it does one thing

• Adds context to code

• via a semantic space of names and convention

• Succinct and clear

• Highly reusable (DRY)

EASY TO TEST

• Does one thing

• Few dependancies (by design)

• Isolated unit tests stub any calls to outside objects

• SOLID decoupling by design

USES
• Encapsulate asynchronicity

• Workers

• Superbolt queueing/fetching

• Hold common regexes (can compose them too)

• On the more radical end, can move all verbs into services to create a “behaviour layer”

• And more!

FURTHER READING
• Gourmet

• http://brewhouse.io/blog/2014/04/30/gourmet-service-objects.html

• https://gist.github.com/pcreux/9277929

• http://www.reddit.com/r/rails/comments/24n5s2/gourmet_service_objects/

• Regular

• http://blog.codeclimate.com/blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/

• http://stevelorek.com/service-objects.html

• http://jamesgolick.com/2010/3/14/crazy-heretical-and-awesome-the-way-i-write-rails-apps.html

