
The SemVer Talk 1.1.0
Web Directions Code 2016
Ben Buchanan,
command-line.net

@200okpublic

http://twitter.com/200okpublic

Versions everywhere

{
 "dependencies": {
 "express": "~4.13.3",
 "gruntcli": "~0.1.13",
 "mustache": "~2.2.1",
 "socket.io": "~1.3.7"
 }
}

1.nervous.0.0.kumquat.1469273302.7

Version schemes

Sequential
Date of release
Degree of change
Degree of compatibility
Random ^%#@

ReadMyBlogVer

Where the versions mean nothing,
you just have to read their blog.

ReadMyBlogVer doesn't scale

reveal.js uses 484 NPM packages.
484 * 2 minutes = ~16 hours.

People don't read your blog

Your API is a tiny piece
of a much larger experience.

Enter Semantic Versioning...

SemVer communicates
changes to a public API.

semver.org

SemVer is the most popular version
scheme in web development.

Most popular?

Preferred in most current dev stacks.
91% of Hashnoders surveyed* use it.
* survey was not in any way scientific.

Semantic
adjective
Relating to meaning in language or logic.

SemVer is...

A degree of compatibility scheme.
SemVer describes changes to the API.

Anchored to 1.0.0

0.x.y = early development
1.0.0 = first public API
2.0.0 = first breaking change

SemVer is not...

Based on the size, number, or
general vibe of the changes.

SemVer is not...

Guessing if your code works,
or estimating your upgrade work.

1.2.3

1 = major
2 = minor
3 = patch

1.2.3

1 = major
2 = minor
3 = patch

1.2.3

1 = major
2 = minor

3 = patch

1.2.3

1 = major
2 = minor
3 = patch

Pre-release & Build

1.2.3-beta.1
1.2.3-beta.1+001

Precedence

1.2.3
↑
1.2.3-beta.1
1.2.3-beta.1+001 (builds ignored)

X.Y.Z

Three numbers, not one.
Each increments sequentially.
Each increments indefinitely.

1.9.0

Can but does not have to
increment to 2.0.0

1.9.0 can increment to

2.0.0
1.10.0
1.9.1

What do the terms mean?

Major = breaking changes
Minor = new features
Patch = bug fixes

Breaking changes

Code changes which are
not backwards-compatible
are called breaking changes.

Imagine this API:

// returns a small black coffee
COFFEE.gimme('large')

Wait, large returns small ?

Next release

// returns a large black coffee
COFFEE.gimme('large')

Fixed! That's a patch: 1.0.1

Next release

// adds types of coffee
COFFEE.gimme('large', 'latte')

New feature! That's a minor: 1.1.0

Next release

// has a more extensible format
COFFEE.gimme({
 'size':'large',
 'type':'latte'
})

// but old calls no longer work
COFFEE.gimme('large', 'latte')

That's a breaking change: 2.0.0

Shorthand

SemVer compresses information.

We judge risk every day

Update available 1.7.7 → 1.7.9
Run npm i g bower to update

How risky is this upgrade?

1.0.0 to 2.0.0 = dangerous
1.0.0 to 1.1.0 = safe
1.0.0 to 1.0.1 = safe

What will happen when I upgrade?

1.0.0 to 2.0.0 = things will break
1.0.0 to 1.1.0 = you can use something new
1.0.0 to 1.0.1 = something was fixed

What do I need to read?

1.0.0 to 2.0.0 = upgrade guide, definitely
1.0.0 to 1.1.0 = release notes, maybe
1.0.0 to 1.0.1 = nothing

Non-code SemVer

Versions can help with
design, copy...

Does this look familiar?

website-new.psd
website-new_new.psd
website-new_new-blue.psd
website-new_new-with-bigger-logo.psd
website-new-final.psd
website-new-final-fixed.psd

Better!

website-0.1.psd
website-0.2.psd
website-1.0.psd
website-1.0.1.psd
website-1.1.0.psd
website-2.0.psd

So we’ve solved everything?

Excellent! Job done.

Many people don't follow SemVer.

:(

Common breaches

Breaking changes in minor or patch
New features in a patch
Skipping versions
Modifying a deployed package
Permanent Zero

Protect yourself

Lock noncompliant dependencies.
Avoid confusing auto-upgrade syntax.
Use shrink wrap.

Auto upgrade in NPM

* auto upgrades major
^1.0.1 auto upgrades minor
~1.0.1 auto upgrades patches

x is easier to read

x auto upgrades major
1.x auto upgrades minor
1.0.x auto upgrades patches

Shrink wrap

Include resolved dependency tree
details when you tag your project.

Why don't people use SemVer?

“Too hard to make changes”
“Not followed, why bother”

Too hard to make changes?

Put the user first.
Plan your API.
Use deprecation.

Backwards compatibility
+
Deprecation
=
Less pain for users

Revisiting our coffee API

// returns coffee
COFFEE.gimme({ 'size':'large' })

// breaks
COFFEE.gimme('large')

Required a 2.0.0 release.

Option: accept both

// returns coffee
COFFEE.gimme({ 'size':'large' })

// returns coffee + warning
COFFEE.gimme('large')

Minor release: 1.2.0

Option: different name

// returns coffee
COFFEE.giveMe({ 'size':'large' })

// returns coffee + warning
COFFEE.gimme('large')

Minor release: 1.2.0

Deprecation

Gives you freedom
Gives users time to update

Common pattern

1.2.0 feature deprecated
2.0.0 removed from docs
3.0.0 removed from code

Pre-releases
+
API planning
=
Less pain for everyone

Pre-release feedback

// v1.0.0beta.1
COFFEE.gimme('large');

// v1.0.0beta.2
COFFEE.gimme('large','latte','skim');

// v1.0.0
COFFEE.gimme({
 'type': 'latte',
 'size': 'large',
 'milk': 'fullcream'
})

API planning (know the domain)

graphic: popchartlab.com

But...

If we bump version numbers,
people will think the API
is unstable!

Hauptversionsnummernerhöhungsangst
noun
Fear of increasing the major version number

Be judicious

50.1.1 is fine
1.50.1 is great
1.1.50 is not so great

“Not followed, why bother”

Lack of compliance
does not invalidate standards.

Advocate.

This is not just a job, it's a craft.

Professionalism

We must earn titles like 'Engineer'
by displaying engineering rigour

This is not a new call

Professionalism

API stability.
Predictability.
Quality.

Professionalism

SemVer is a small piece.
Use it.
Demand it.

1.2.3

1 = broken
2 = improved
3 = fixed
semver.org

1.2.3

1 = broken
2 = improved
3 = fixed
semver.org
Thank you. @200okpublic, command-line.net

