Testing OpenAPI
definitions for better
and consistent APIS

. Christos Gkoros

API Architect - Platform engineering
) <

@ POSTMAN

% @ 9

Build APIs Use APIs Collaborate

© All rights reserved by Postman Inc

Inside Postman

o g ~ W b

API Design

Scale

Platform Engineering
OpenAPI

Spectral

Test examples

<D

£ 8 6

The Postman API

v Postman API (%

> AP .

> B3 API Security

> [Audit Logs
> 3 Billing

> B3 Collections

> B3 Environments

> B9 Import

> 9 Mocks

> 3 Monitors

> 3 Private API Network

> [Pull Requests

> [3scM

> [Secret Scanner
> B9 Tags

> B user

> 3§ Webhooks

> 3 Workspaces

Why integrate with the Postman API

e Enhance Postman’s capabilities - 0 @

Providing users with the tools and resources to optimize. - = , g

e Embed Postman within other workflows

Like established processes enhances productivity and —
streamlines development. +

As an API Architect | study

e Why our users need the API

e What functionalities they seek beyond the core product

e How are they trying to do that

Common Use cases

Automation

Scaffolding of Postman resources

ore (]
Auditin
g =
Ensuring the Postman resources are as they should be
Tool integration —
Developer Portals +
CI/CD + 1

Test-planning, Test analysis, Test reporting ...

My goals for the Postman API

1. Simple and easy to use
2. Effective atitsjob

3. Increase its adoption and usage

API Design

Elements of a good design

e Descriptive names . e

Names that are descriptive names and aligned with the API’s

oals

g]
e Rich Functionality 1

User cans do easily what they need, like filtering with certain

attributes. —
e Flexible formats -

+

The format is flexible and it adapts well on changes over time
e Clear error messages

Good experience especially during troubleshooting

API quality measurement:
WTFs per minute

> 5 s JWTF?
WTF: WTF? R WTF?

AN WTF 2211

AN

WTF?

API festing \ API testing

D

N WTF

N is this?
| Fe—| —
o WTF?| | o
\~
— N

\

e N~
\ / Dude, WTF?

WTF? | wTF?
NG WTF?

Good API Bad API

Scale

Web

Desktop

Ul

Workspaces

POSTMAN INTERNAL SERVICES

2

Postman API HEAES
Users
»
Desktop
REST

ul

API Gateway J

Workspaces

POSTMAN API POSTMAN INTERNAL SERVICES

APl Gateway brings common

—
°

a B W Db

Authentication
Security
Throttling

Routing

2

Postman API
Users

REST

Web

Desktop

ul

POSTMAN SQUADS

v
API Gateway J

Workspaces

POSTMAN API

POSTMAN INTERNAL SERVICES

The Postman API needs to

1. Have a common Look and Feel

2. Be aunified product rather a mix of different
endpoints

Recap - What do we need?

e Good API Design

e Consistency at scale

e Autonomy +

e Fastdelivery

Q-

e) | <+

Y —

Platform Engineering

Docs in Public

2

Postman API
Users

Postman L ol
Workspace

Q e

REST

Web

Desktop Q

ul

Publish Docs

v
API Gateway J

Publish via
Admin API

v

Platform tools

v

POSTMAN SQUADS

v

Workspaces

Deployment

POSTMAN API

POSTMAN INTERNAL SERVICES

\'/OPEN API

INITIATIVE

1 openapi: '3.0.0'

2 info?

3 version: '1.0.0'

4 title: 'Spacecraft API'

5 description: Buy or rent spacecrafts
6

7 paths:

8 /spacecrafts/{spacecraftId}:

9 parameters:
10 - name: spacecraftId
44; description: The unique identifier of the spacecraft
12 in: path
43 required: true
14 schema:
15 type: string
16 get:
17 summary: Read a spacecraft
18 responses:
19 '200":
20 description: The spacecraft corresponding to the provided ‘spacecraftId’
24 content:
22 application/json:
23 schema:
24 type: object
25 properties:
26 id:
27 type: string
28 name:
29 type: string
30 type:
31 type: string
32 enum:
33 - capsule
34 - probe
35 - satellite
36 - spaceplane
37 - station

-:g;:-Spectral

query-parameters-camel

ase:
given: '$..parameters[?(@.in = '‘'query'')].name’

hen:
function: casing
functionOptions:
type: camel
disallowDigits: true
message: Query parameters should be camelCase and not contain digits
severity: error

Docs in Public

2

Postman API
Users

Postman L ol
Workspace

Q 1

REST

Web

Desktop Q

ul

Publish Docs

v
API Gateway J

Publish via
Admin API

v

OPEN API

INITIATIVE

Platform tools

v

POSTMAN SQUADS

v

-:{ﬁ:-Spectral

Workspaces

Deployment

POSTMAN API

POSTMAN INTERNAL SERVICES

Test examples

Contact information

%

openapi: 3.0.3

info:
version: 1.0.0
title: Fail Contact info
description: A Spacecraft API

openapi: 3.0.3
info:
version: 1.0.0
title: Pass Contact info
description: A Spacecraft API
contact:
name: Spacecraft API team
email: spacecraft-api@example.com
x-slack-channel-id: CV1UH7H27

-

Semantic Versioning

%

openapi: 3.0.3
info:

version: vl

title: Fail sem-ver
paths: {}

v A W N R

openapi: 3.0.3

info:
version: 1.0.0
title: Pass sem-ver
paths: {}

Resources are plural nouns

%

openapi: 3.0.3
info:
version: 1.0.0
title: Fail Path plural

paths:
/spacecraft/{id}: «
get:

responses:
'200':
description: OK

%

openapi: 3.0.3
info:
version: 1.0.0
title: Fail Path Plural

paths:

/spacecraft/{id}/launch: «

post|:
responses:
'200':
description: OK

openapi: 3.0.3
info:
version: 1.0.0
title: Pass Path plural

paths:
/spacecrafts/{id}: «
get:
responses:
'200':
description: OK

No resource nesting

%

openapi: 3.0.3
info:
version: 1.0.0
title: Fail Resource Nesting

paths:
/account/transfer: «
get:
responses:
'200':
description: OK

openapi: 3.0.3
info:
version: 1.0.0
title: Pass Resource Nesting

paths:
/account-transfers: «
get:
responses:
'200"':
description: OK

openjapi: 3.0.3
info:
version: 1.0.0
title: Pass Resource Nesting

paths:

/accounts/{accountId}/transfers: «

get:
responses:
'200':
description: OK

Camel case parameters

%

openapi: 3.0.3
info:
version: 1.0.0
title: Fail Query Parameter

paths:
/spacecrafts:
get:
parameters:
- in: query
name: spacecraft-id «
schema:
type: string
responses:
'200':
description: OK

openapi: 3.0.3
info:
version: 1.0.0
title: Pass Query Parameter

paths:
/spacecrafts:
get:
parameters:
- in: query
name: spacecralftId «
schema:
type: string
responses:
'200"':
description: OK

Date Format

openapi: 3.0.3 openapi: 3.0.3
info: info:
version: 1.0.0 version: 1.0.0
title: Fail Date Format title: Pass Date Format
paths: paths:
/resources:
/spacecrafits: i
[requestBody:
requestBody: coRtents
content: application/json:
application/json: schema:
schema: properties:
properties: createdAt:
createdAt: type: string
type: number « format: date
responses: example: '2023-06-16T06:43:34-07:00"
'200"': responses:

'200':
description: OK

description: OK

Collection must support pagination

%

version: 1.0.0

openapi: 3.0.3
info:

title: Pass Paginated

paths:
/spacecrafts:
get:
responses:
'200"':
description: OK
content:
application/json:
schema:

openapi: 3.0.3
info:
version: 1.0.0
title: Pass| Paginated

paths:
/spacecrafts:
get:
responses:
'200':
description: OK
content:
application/json:
schema:
properties:
offset:

type: number

limit:

type: number

openapi: 3.0.3
info:
version: 1.0.0
title: Pass Paginated

paths:
/spacecrafts:
get:
responses:
'200"':
description: OK
content:
application/json:
schema:
properties:
nextCursor:
type: string|

Collections must support sorting

%

openapi: 3.0.3
info:
version: 1.0.0
title: Sorting
paths:
/resources:
get:
responses:
'200':
description: OK

openapi: 3.0.3
info:
version: 1.0.0
title: Sorting

paths:
/resources:
get:
parameters:
- in: query
name: sort «
schema:
type: string
responses:

'200"':
description: OK

Parameters should have examples

% &

openapi: 3.0.3 openapi: 3.0.3
info: info:
version: 1.0.0 version: 1.0.0
title: Parameter examples title: Parameter examples
paths: paths:
/resources: /resources:
get: get:
parameters: parameters:
- in: query - in: query

name: cursor name: cursor

schema: schema:
type: string type: string
responses: example: adfds23423ASDFasdfwerwq «
'200"': responses:

'200':
description: OK

description: OK

No version in paths

% &

openapi: 3.0.3 openapi: 3.0.3
info: info:

version: 1.0.0 version: 1.0.0

title: No Version in Path title: No Version in Path
paths: paths:

/v1/spacecrafts:« /spacecrafts:

get: get:

responses: responses:
'200"': '200':

description: OK description: OK

Error format - Problem Details

openapi: 3.0.3
info:
version: 1.0.0
title: Problem Details

paths:
/resources:
get:
responses:
'200':
description: OK
'400"':
description: Bad Request
content:

application/problem+json:

schema:
properties:
error:

type: string «
code:

type: string

'401':
description: Unauthorized
content:
application/problem+json:
schema:
properties:
type:
type: string
example: error
detail:
type: string
example: error-detail
title:
type: string
example: error-title

Tt 1t

Challenges

e Testing the tests

Since the tests are configuration files we need actually writing
tests for them again

e Some things are hard to test even with Spectral

i u]
For example descriptive names, but Al could help with that - =
e Re-evaluating tests
As our API Design Guidelines involve we have to constantly —
adapt and update our tests +
+ |

e Design dept and breaking changes
Some of the old endpoints are not compliant but we cannot
change them as this wall cause errors in existing users.

Actions that you can do

Figure out the API Design style you need
Create Spectral rules to codify it

Find a point in the critical path in the delivery life cycle that
compliance testing can be performed

Enforce the use of OpenAPI
Implement your compliance testing

Come meet me at the Postman booth for further discussion.

Thank you

