

Security is too hard.
It’s time for automation!

Sasha Rosenbaum
@DivineOps

Dev
Ops

Architect
Product Manager

Microsoft => GitHub

@DivineOps

And you?

State of security today

More code = more problems

Source: GitHub Data Science team analysis

Insecure code causes
breaches

53%
of breaches are caused by
weaknesses in applications

Source: 2019 Data Breach Investigations Report, Verizon

Development Build Test/QA Production Breach

Remediation
Costs

SDLC
Stages

Develop Build Test Deploy Breach

$80 $240
$960

$7,600

$ Millions

Sources: NIST, Polemon Institute

The earlier we remediate, the better!

Security researchers are outnumbered!

Sources: NIST, Polemon Institute

Assume Breach

There are two types of companies:
those that have been hacked,
and those that don't know they have been hacked

The Two Widest
Back Doors

• Credential Theft

• Exploiting Known Vulnerabilities

46%
of compromised systems had no
malware on them

How do
breaches occur?

99%
Of the exploited vulnerabilities
were compromised more than a
year after the CVE was published.

Attackers have changed their playbook…

Source: Mandiant 2014 Threat Report

of victims discovered
the breach internally

33%

of victims were
notified by an
external entity

67%

of victims have up-
to-date anti-virus

signatures

100%

Of recipients open
phishing messages

(11% click on
attachments)

23%

Nearly 50% open e-
mails and click on

phishing links within
the first hour.

50%

M I C R O S O F T C O N F I D E N T I A L , N D A

• Total population of 524 people.
• 220 people clicked on signup button. 37 people clicked on both phishing emails
• Only 11 people (2%) reported to as probable phish!

Phishing

Employee awareness
training is not very
effective in preventing
phishing attacks

Email protection

Securing the software supply chain

How much do you rely on open source?

Open source software in the Enterprise

Open Source

Inner Source

New Code

of organizations make
extensive use of open
source

99%

90%
of new application
development leverages
open source software.

New Application Code
Source: Forrester Wave Software Composition Analysis 2017

99%
Of the exploited vulnerabilities
were compromised more than a
year after the CVE was published

90% percent of active applications use libraries with
a known CVE — 30 percent used a library with a
critical CVE. Patching a critical CVE took an
average of 34 days.

Source: TCell Security Report, 2018

Automatically upgrade vulnerable dependencies

Dependabot increases the resolve rate and speed

Package Management

Ø OSS dependencies are scanned for vulnerabilities and kept
up to date

Ø Builds artifacts are managed

Ø Binary artifacts are accessed via a trusted feed and
scanned for vulnerability

Securing you Code

Secret scanning

Code scanning

Code scanning can help!

Code scanning is still an aspiration

Source: Veracode SOSS Vol. 10

~Daily
~Weekly

Of applications using static analysis!

Code scanning is automated code review!

Code scanning

Automation is not everything

Why Threat Model?

A way to identify security issues during design

Developers think about how a product works -
Attackers think about how to abuse a product

Shift the mindset -
Think like an attacker

Threat Model:
Pull Request Bypass

War Games

“Defenders think in lists. Attackers
think in graphs. As long as this is
true, attackers win”
-- John Lambert (MSTIC)

Security Mindset - Assume Breach

� Initially double-blind test
� Over time, eliminated blue team
Our defenders need to be our defenders

vs.

Shifted left to prevent top risks
� Credential theft
� Secret leakage
� OSS vulnerabilities

Started with war games to the learn attacks and practice response

Example: Red Team Attack

Open File
Share

Plaintext Test
Credentials

Dev box with
Test Account as

Local Admin

Mimikatz
Credential

Dump

Dev’s
Credentials

What do plaintext credentials look like?

Another Source of Leak: Credentials in a File

Every team seems to experience this one at the beginning.

Prove it!

Every time someone viewed the dashboard…

Protect Against Lateral Movement

Ø Assume layers before yours will be breached

Ø Never assume an internal service is unimportant

Ø Never assume a service is secure because it is internal

No Standing Permissions

Ø No standing access to production

Ø JIT (just in time) tokens only

Ø Secure Workstations only

Ø Infrastructure refresh

Internal CTFs

Capture the Flag events

Thank you! @DivineOps

Thank you! @DivineOps

