
An Overview of Drupal Front-End
Component Integration Methods

Brian Perry
Lead Front-End Developer

Slides & Sandbox Repo:

http://bit.ly/component-int

2

• Lead Front End Dev at Bounteous

• Rocking the Chicago suburbs

• Lover of all things components...

…and Nintendo

BRIAN PERRY

d.o: brianperry

twitter: bricomedy

github: backlineint

nintendo: wabrian

brianperryinteractive.com

3

COMPONENTS!

5

What is it?

• Creating modular and re-usable elements

• Building a design system, not a series of pages

• Can use a pattern library for documentation and prototyping

• Tools like Pattern Lab and Storybook

• Can help decouple front and back end
development.

COMPONENT BASED DEVELOPMENT

OUR EXAMPLE TWIG COMPONENT

7

8

{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}

9

10

COMPONENTS IN DRUPAL

12

• Live in the default template directory

• May not require any additional effort to get
data to display

Standard Drupal Components Integrated Drupal Components

• Live somewhere other than the default
templates directory

• Require some additional effort to get data to
display

• For this talk, I don’t really care how your
integrated components get into your theme.

• Could live in your theme

• Could be external dependency

WHERE DO MY COMPONENTS LIVE?

For the sake of this talk…

13

May be right for your team or project. No shame necessary.

• Build with Drupal (and only Drupal) in mind.

• Take advantage of things that can be re-used in Drupal

• Display modes

• Blocks

• Paragraphs

• Layouts

• Lose out on rapid prototyping advantages.

STANDARD DRUPAL COMPONENTS

14

STANDARD DRUPAL COMPONENT
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser

15

16

INTEGRATED DRUPAL COMPONENTS
Building components that live outside of the traditional templates directory

18

COMPONENT LIBRARY / PATTERN LAB

19

Creates Twig namespaces to access templates in non-standard locations

COMPONENTS MODULE

20

• Includes:

• Mapping in Twig templates

• Preprocessing

• More likely to get out of sync with Drupal UI

• More likely to break things like caching, Drupal
functionality, etc.

Mapping Data In Code Mapping Data In Admin UI

• Includes:

• UI Patterns

• Layouts

• Less likely to disrupt Drupal functionality

• Potentially not as flexible

INTEGRATION APPROACHES

Primarily fall into two categories

21

INTEGRATING IN CODE
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser

22

Drupal template references template in component library

MAPPING IN TWIG PRESENTER TEMPLATE

23

Map in preprocess…

DATA MAPPING IN PREPROCESS

24

…and use simpler include in Twig presenter template

DATA MAPPING IN PREPROCESS

25

• Get Partial data from field render arrays

• field_label

• field_value

• field_raw

• field_target_entity

• Map just the data you want

• May require additional caching considerations…

Twig Field Value Twig Tweak

• Helpful twig functions and filters

• Render views, blocks, regions, fields, entities and
so on.

• Render image with specific image style

• Extract tokens from context

HELPER MODULES

Simplify Twig Mapping

26

• Simplify set up and provide default tooling

• Some provide default components and helper functions

• Various levels of opinionated

• Examples:

• Emulsify

• Gesso

• Shila

• Particle

STARTER KITS AND THEMES

27

• Same presenter templates

• Different component location

• Different component library tool

EMULSIFY DESIGN SYSTEM EXAMPLE

28

29

MAPPING DATA IN THE ADMIN UI

31

Define and manage components in a way that Drupal understands

• Define UI Patterns as Drupal Plugins

• Configure data mappings in the UI

• Optional Pattern Library page exposed in Drupal

• Also allows Drupal to:

• Preprocess patterns

• Render patterns programmatically

UI PATTERNS MODULE

32

{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}

Pattern: container

33

34

35

36

UI PATTERNS VIEWS

37

38

LAYOUTS
{{ region: title }}

{{ region: platform }}

{{ region: image }}

{{ region: body }}

{{ region: link }}

{{ region: year }}

Layout: container

39

LAYOUTS AND LAYOUT BUILDER

40

LAYOUTS AND LAYOUT BUILDER

41

LAYOUTS AND LAYOUT BUILDER
Add ‘container’ section for teaser layout

42

• Recently released (stable release, but early)

• Exposes UI Patterns to Layout Builder

• Sidesteps visual layout issues

• Use any fields available to the entity, along
with fixed inputs.

COMPONENT BLOCKS

Best of both worlds

43

COMPONENT BLOCKS
Add ‘container’ section for teaser layout

44

COMPONENT BLOCKS

45

COMPONENT BLOCKS

46

• Recently released

• Another way to define a component via yml

• Can derive block configuration

• More focused on Decoupled use case (inspired
by PDB)

COMPONENT

Not to be confused with ‘Components’…

47

48

RENDER COMPONENT AS COMPONENT BLOCK

Settings passed as data attributes
on wrapping div.

49

• Define component in code so that Drupal
becomes aware of it.

• Likely requires some amount of duplication
between Drupal and component library

Manual Definition Automatic Discovery

• Drupal module automatically discovers
components from component library and
makes them available to Drupal.

• Emerging/experimental concept.

• Dev modules, proceed with caution.

• Expects a particular convention and thus won’t
work with all component libraries.

COMPONENT DEFINITION APPROACHES

AUTOMATIC DISCOVERY

51

• End result same as previous UI Patterns
Example

• No redundant ui_patterns.yml file necessary

• Some limitations

• Requires yml or json file with pattern data

• Requires specific approach to nested
components.

UI PATTERNS PATTERN LAB

Automatically create UI Patterns from your pattern library… really.

52

Combines aspects of manual definition and automatic discovery

• Requires creating schema definition file (which
has potential applications outside of Drupal)

• Automatically derives blocks from pattern
library components

• Supports a specific set of field types

• Token support in D7 but not yet D8

PATTERNKIT

53

PATTERNKIT PATTERN DISCOVERY

54

55

56

Tool to build Twig UI Components with Storybook

• Extended variants of UI Patterns

• Generate components via cli

• Use with zero config in Drupal with
wingsuit_companion module

• Wingsuit Kickstarter project available

WINGSUIT

PRE-PACKAGED COMPONENT SOLUTIONS

58

Ready to use web-components

• Full design system

• Selectively require components.

BOLT DESIGN SYSTEM

59

Component distribution system

• Combines a theme, Gulp workflow
and components.

• Download existing components or
create your own

• Not Composer / NPM driven

COMPONY

60

Drupal components with Vue style syntax

• Use like any template

• Automatically generates library definitions

• Derive Blocks and Layouts with Annotations

• Provides component library

• Doesn’t really solve
integration problem

• Does help with distribution
and re-use.

SINGLE FILE COMPONENTS

61

COMPONENT WORKFLOW
Present and Future

63

Leveraging a mix of approaches

• Integrated components in a custom theme

• Majority of twig/sass/js inside Pattern Library instance.

• Defining component mapping in Drupal UI for lightweight components

• Preprocess for components with heavy logic

• Created preprocess helper abstract class – hope to open source in future

• Project specific helper functions

• Limited mapping in twig templates

• Build components compatible with Layout Builder

• Custom block types with limited use of Paragraphs

CURRENT APPROACH(ES)

64

Start by mapping in code.

• Most battle tested approach

• Chose an approach based on team makeup

• FE focused – Twig mapping

• BE savvy – Preprocess

• Consider other methods as experience grows

SO… WHAT SHOULD I DO?

65

Basically React (or insert the name of your favorite JS framework here)

• Build fully packaged distributable components

• Easily install them

• npm install cool-component / composer require drupal/cool-component

• Import them in code

• import ‘CoolComponent’ from ‘cool-component’; / {% include ‘@components/cool-component.twig’ %}

• Use them as I see fit

• <CoolComponent />

DREAM WORKFLOW

66

Have a lot of the pieces, but need a little extra ‘magic’

• Make it easier to package, distribute and use individual components

• Track evolution of Web Components

• Improve UI based component configuration process in Drupal

• With specific focus on Layout Builder.

• Component Blocks seems to bridge this gap well

• Evolve approaches allowing Drupal to automatically discover components

• Keep building amazing looking component based sites using Drupal

HOW DO WE GET THERE?

Thanks to the many Drupal
component ecosystem
contributors!

68

69

Q&A

Lead Front End Developer
Brian Perry

Email: brian.perry@bounteous.com

