- e g A .:. | ',.E:‘:"-.l':"_f‘;'

Y RenderATL 2024

O u r O Workshop
Code Clean:;
°

Introduction to Dependency
Injection with Fx Uber

Agenda

Ol Introduction s
02 Dependency Injection comes
03 :X Framework (25 minutes)

- - - Break: 10 minutes - - -

04 Project Overview emes
05 Hands on time!
06 Wrap up + feedback e

Render Your Go Code Clean:

Uber | Introduction to Dependency Injection with Fx

Meet your team!

Dorian Perkins

Staff Software Engineer
Software Networking team

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Kemet Dugue

Software Engineer
Driver Onboarding team

Paul Murage

Software Engineer
Configuration Platform team

What to expectin
this workshop

| Render Your Go Code Clean:

Introduction |

What you’ll need ...

Uber

Laptop

You'llbe coding in this
workshop, so make sure you
have your trusty laptop handy.

Render Your Go Code Clean:

! Introduction to Dependency Injection with Fx

Go

Ensure you have Go
downloaded and installed
locally before the workshop.

[https://godev/doc/install]

IDE

Get your favorite code editor
ready to go and ensure itis set
up to work with Go.

(prior experience in Go is not required).

https://go.dev/doc/install

Introduction |

What you'll get ...

Understanding of
dependency injection

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Introduction to the Fx
application framework

Hands-on experience
writinga Go
application with Fx

Dependency
Injection

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Dependency Injection |

What is a dependency?

Code that s relied on by other code to function correctly

External dependencies

"go.uber.org/zap"

e Pre-written code created by a third-party
(ie, libraries or frameworks)

Internal dependencies

e Connections between different parts of "mycompany . com/my-project/my-dependency”
your own code

Uber | Render Your Go Code Clean: 8
Introduction to Dependency Injection with Fx

Dependency Injection |

What is dependency injection (DI)?

Supplying an object with its dependencies rather than creating them itself

X Example 1 (global state) X Example 2 (create deps)

MyFunction() {

Logger = zap.NewExample()

logger := zap.NewExample()
logger.Info("Hello!")

MyFunction() {

Logger.Info("Hello!") }

}

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Dependency Injection |

What is dependency injection (DI)?

Supplying an object with its dependencies rather than creating them itself

v Example 3 (DI, concrete type) v’ Example 4 (DI, interface)

Logger
Info(v ...any)

MyFunction(logger *zap.lLogger) {

logger.Info("Hello!")

}

}
MyFunction(logger Logger) {

logger.Info("Hello!")

}

Uber | Render Your Go Code Clean: 10
Introduction to Dependency Injection with Fx

Dependency Injection |

Benefits

e Loose coupling
o Objects are less reliant on specific implementations

Logger
Info(v ...any)

MyFunction(logger Logger) {

logger.Info("Hello!")

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

11

Dependency Injection |

Benefits

e Loose coupling
e Promotes modularity
o Separates concerns of dependency creation and usage

main() {
logger := zap.NewExample()

MyFunction(logger)

MyFunction(logger Logger) {

logger.Info("Hello!")

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

12

Dependency Injection |

Benefits

e Loose coupling
e Promotes modularity
e Increased maintainability
o FEasier to swap out implementations without code changes

main() {
logger := fancylogger.New()

MyFunction(logger)

MyFunction(logger Logger) {

logger.Info("Hello!")

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

13

Dependency Injection |

Benefits

e Loose coupling
e Promotes modularity
e Increased maintainability
e Improved testability
o Dependencies can be easily mocked or stubbed
Test_MyFunction(t *testing.T) { Test_MyFunction(t *testing.T) {

logger := zaptest.NewlLogger(t) logger := mocks.NewMockLogger()
MyFunction(logger) MyFunction(logger)

Logger
Info(v ...any)

MyFunction(logger Logger) { MyFunction(logger Logger) {

logger.Info("Hello!") logger.Info("Hello!")

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

14

DI
Examples &
Live Demo

(code examples)

https.//tulbercom/render-demaos

| Render Your Go Code Clean:

https://t.uber.com/fx-tutorial

Dependency Injection |

vl — No dependency injection

main() {

logger := zap.NewExample()

handler := http.HandlerFunc((w http.ResponseWriter, r *"http.Request) {
logger.Info("[vl] Handler received request")
_, err := io.Copy(w, r.Body); err != {
logger.Warn("Failed to handle request", zap.Error(err))

)

logger.Info("Registering handler™)
http.Handle("/echo", handler)

logger.Info("Starting server")
http.ListenAndServe(":8080",

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

16

Demo..

Render Your Go Code Clean:
Uber Eats | . L .
Introduction to Dependency Injection with Fx

17

Dependency Injection |

v2 — Manual dependency injection

main() {

logger := NewLogger()

handler := NewHandler(logger)
RegisterHandler(logger, handler)
StartServer(logger)

NewHandler (logger *zap.Logger) http.Handler {
http.HandlerFunc(
(w http.ResponseWriter, r *http.Request) {
logger.Info("[v2] - Handler received request")
_, err := io.Copy(w, r.Body); err = {
logger.Warn("Failed to handle request", zap.Error(err))

NewLogger() *zap.Logger {
zap .NewExample()

StartServer(logger *zap.Logger) {
logger.Info("Starting server")
http.ListenAndServe(":8080",

RegisterHandler(logger *zap.Logger, h http.Handler) {
logger.Info("Registering handler")
http.Handle("/echo", h)

Uber | Render Your Go Code Clean: 18
Introduction to Dependency Injection with Fx

Demo..

Render Your Go Code Clean:
Uber Eats | . L .
Introduction to Dependency Injection with Fx

19

Dependency Injection |

Cost of manual dependency injection

e Requires writing boilerplate in every service
o Repetitive and time consuming

App A App B

main() { main() {

logger := NewlLogger() logger := NewLogger()

handler := NewHandler(logger) handler := NewHandler(logger)
RegisterHandler(logger, handler) RegisterHandler(logger, handler)
StartServer(logger) StartServer(logger)

Render Your Go Code Clean:

Uber | Introduction to Dependency Injection with Fx

main() {

logger := NewLogger()

handler := NewHandler(logger)
RegisterHandler(logger, handler)

StartServer(logger)

Dependency Injection |

Cost of manual dependency injection

e Requires writing boilerplate in every service
o Repetitive and time consuming
e Long-term maintenance burden as application evolves
o Some adopt quickly, others fall behind; usages diverge over time

App A (adopts change) App B (falls behind)

main() {

logger := NewlLogger()

handler := NewHandler(logger)
RegisterHandler(logger, handler)
StartServer(logger)

main() {

handler := NewHandler(logger)
RegisterHandler(logger, handler)

StartServer(logger)
}

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

21

Dependency Injection |

Cost of manual dependency injection

e Requires writing boilerplate in every service

o Repetitive and time consuming
e Long-term maintenance burden as application evolves

o Some adopt quickly, others fall behind; usages diverge over time
e Canlead to creation of global state

o Less effort to maintain (singleton); complicates testing

Test_MyFunction(t *testing.T) {
globallogger := Logger

Logger = zap.NewExample()

MyFunction() {
Logger := zaptest.New(t)

O A

Logger.Info("Log message™)

Logger = globallogger

30O
MyFunction()

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

22

Dependency Injection |

Cost of manual dependency injection

e Requires writing boilerplate in every service
o Repetitive and time consuming
e Long-term maintenance burden as application evolves
o Some adopt quickly, others fall behind; usages diverge over time
e Canlead to creation of global state
o Less effort to maintain (singleton); complicates testing
e Cost multiplies at scale
o Uber’s hypergrowth demanded smarter, more-efficient solution

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

23

Uber

Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

24

http://github.com/uber-go/fx

What is Fx?

e A dependency injection framework for Go, built and battle-tested at Uber.
e Provides dependency injection without the manual wiring.

v2 — Manual DI v3 - Fx

main() {

main() {

x.New(
fx.Provide(NewLogger),
fx.Provide(NewHandler),
fx.Invoke(RegisterHandler),
fx.Invoke(StartServer),

).Run()

logger := NewlLogger()
handler := NewHandler(logger)

RegisterHandler(logger, handler)
StartServer(logger)

Uber | Render Your Go Code Clean: 25
Introduction to Dependency Injection with Fx

Demo..

Render Your Go Code Clean:
Uber Eats | . L .
Introduction to Dependency Injection with Fx

26

Fx |

The magic
Connecting providers to receivers

Providers Receivers
“Here’s an instance of component X” “I need an instance of component X”

NewHandler(logger *1log.Logger) http.Handler {
logger.Print("Log message")

NewLogger() *log.Logger {
log.New(os.Stdout, "", 0)

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

27

Fx |

Provide & Invoke
Core building blocks

Provide Invoke
“Registers a function with Fx lifecycle”

main() {
x.New(

fx.Provide(NewLogger)

“Executes a function during Fx lifecycle”

main() {
x.New(
fx.Invoke(NewLogger)

) Run()

) Run()

e Provides are only executed as necessary (i.e, if they have a receiver).
e Invokes are always executed.

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

28

Fx |

Provide & Invoke
Fx’s core building blocks

Revisiting example v3
Why Provide vs Invoke?

main() {

No return values = No receivers

RegisterHandler(h http.Handler) {
http.Handle("/echo", h)

fx.New(
fx.Provide(NewLogger),

fx.Provide(NewHandler), StartServer() {

http.ListenAndServe(":8080",

fx.Invoke(RegisterHandler),
fx.Invoke(StartServer),

) -Run()

e Core business logicis typically invoked.

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

29

Fx |

Fx Lifecycle

Two high-level phases: initialization and execution.
Initialization: reqgister constructors and decorators, run invoked functions

Execution: run all startup hooks, wait for stop signal, run all shutdown hooks

Initialization (fx.New) Execution (fx.App.Run)

Provide —® Decorate M—D Start —— Wait :—D Stop

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

30

Fx |

Initialization (fx.New) Execution (fx.App.Run)

Lifecycle Hooks e s s s — v

Lifecycle hooks provide the ability to schedule work to be executed by Fx
when the application starts up or shuts down.

Fx allows two kinds of hooks:

e OnStart hooks, runinthe order they were appended at Start
o Example: Start HTTP server

e OnStop hooks, runin the reverse order they were appended at Stop
o Example: Shutdown HTTP server

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

31

Fx |

Modules

Sharable bundles of one or more components

Logger as a Module

Library module names should end in -fx

loggerfx

Module = fx.Options(
fx.Provide(NewLogger),

NewLogger() *log.Logger {
log.New(os.Stdout, "", @)

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Using Logger Module
Replace fx.Provide with Fx module

main() {

fx.New(
loggerfx.Module,

) Run()

32

Fx |

Parameter objects

Functions exposed by a module should not accept dependencies directly as
parameters. Instead, they should use a parameter object.

This allows new optional dependencies to be added in a backwards-compatible
manner.

Params
fx.In

LoglLevel *zapcore.Level

NewLogger(p Params) (Result, error) {

Uber | Render Your Go Code Clean: 33
Introduction to Dependency Injection with Fx

Fx |

Result objects

Functions exposed by a module should not declare their results as reqular return
values. Instead, they should use a result object.

This allows new results to be added in a backwards-compatible manner.

Result
fx.0ut

Logger *log.Logger

NewLogger(p Params) (Result, error) {

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

34

Fx |

Modules
Sharable bundles of one or more components

Module bundle Using Module bundle”

Provide..all the things! Complex scaffolding made easy

uberfx main() {
Module = fx.Options(fx.New(
loggerfx.Module,

uberfx.Module,
metricsfx.Module,

rpcfx.Module,).Run()
serverfx.Module,
storagefx.Module,

" Useful for adding/deprecating shared libraries without modifying main.

Uber | Render Your Go Code Clean: 35
Introduction to Dependency Injection with Fx

Fx |

Value Groups

Fx does not allow two instances of the same type to be present in the container.

A value group is...
e a collection of values of the same type.
e defined using the “‘group” annotation.
o Must be used on both the input parameter slice and output result.

Result
fx.0ut

Params
fx.In

Route []Route "group:"routes"’ Route Route "“group:"routes"’

Render Your Go Code Clean:

Uber | Introduction to Dependency Injection with Fx

36

Fx |

Value Groups

e Anynumber of constructors can feed values into a value group.
e Anynumber of consumers can read from a value group.

NewA NewB NewZ

NewServeMux NewSiteMap

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Fx |

Pros

e Eliminate globals
o Helps remove globally shared
state
e Increase efficiency
o Lessboilerplate code —
Less repetitive work

e No manual wiring
o Eliminates need to manually wire
up dependencies
e Codereuse
o Build loosely coupled,
well-integrated sharable modules

Uber | Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Cons

Steeper learning curve

©)

Introduces complexity harder to
grasp for new developers

Loss of control flow

o Framework controls order of
execution
Harder to debug
o Missing dependencies become

runtime errors

38

Uber Eats |

Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

39

Uber Eats |

Render Your Go Code Clean:
Introduction to Dependency Injection with Fx

Kemet Dugue
e
IEI X

Paul Murage

40

