
SECURING DISTRIBUTED SOFTWARE
DREW MCLELLAN, PHPSW SEPTEMBER 2016



DEALING WITH BUGS ON A 
PROJECT WITH RESIDENT 

DEVS IS EASY



FOR AN UPDATE TO A DEPENDANCY

> Read about an update
> Download and test the patch

> Push it to production



FOR YOUR OWN CODE

> Identify the problem
> Fix the problem
> Test the patch

> Push it to production



DEALING WITH BUGS AS A 
LIBRARY MAINTAINER IS 

EASY



 BUGS IN LIBRARIES

> Identify the problem
> Fix the problem
> Test the patch

> Publish a new release
> Announce that users should update



BUT WHAT HAPPENS FOR 
THINGS THAT FALL IN 

BETWEEN?



PERCH IS A SELF-HOSTED 
CONTENT MANAGEMENT 

SYSTEM



PERCH

> PHP + MySQL 
> (GD, Imagick etc)

> The WordPress Stack



AN ANTIDOTE TO 
WORDPRESS



PERCH

> No reliance on dozens of third party plugins
> Stable and reliable, set and forget

> Update when you work on the site, not in between
> Excellent security track record



PROJECT-WORK FRIENDLY



EXCELLENT SECURITY 
TRACK RECORD



FROM MAY 2009 TO NOVEMBER 2015:
NO EXPLOITABLE SECURITY ISSUES



WE GOT AN EMAIL…
From a user saying they could hack our online demo 

server and download a list of all our customers and 
would we pay them for this information?



WE KNEW TWO THINGS



1. They couldn’t access our customer data, at most they 
could get the names and email addresses of 100 or so 

current demo users (it’s all sandboxed)
2. We don’t negotiate with terrorists



THEY FAILED TO REALISE 
WE COULD JUST LOOK AT 

OUR LOGS



FROM THE LOGS

> I could see they’d uploaded a PHP webshell
> I could see how they’d uploaded it, which lead me 

directly to the bug
> I could also see that even though they’d uploaded it, 

our server wouldn’t run it



WEBSHELL ATTACKS



WEBSHELL

I wasn’t familiar with these 

Single page PHP script that provides a web console for 
executing shell commands and causing havoc



TWO THINGS NEED TO HAPPEN FOR THE ATTACK TO 
WORK

1. The attacker needs to be able to get the script onto 
the server

2. The script needs to be able to execute via a standard 
HTTP request



IT WAS POSSIBLE TO GET THE FILE ONTO THE 
SERVER

> Our demo server is well configured, so it failed at the 
second part

> the script couldn’t run



PERCH HAS PLUGINS FOR 
USING RICH EDITORS ON 

TEXTAREAS



 F'KING WYSIWYG

> These can be plain text, Markdown, Textile, or HTML
> As long as the editor enhances an HTML textarea input, 

it’ll work



YOU NEED TO WRITE TWO THINGS

1. A bit of JavaScript to initialise the editor
2. If the editor has a file upload button, a quick PHP 

script to handle the file upload via our API



UH OH. FILE UPLOADS.



FILE UPLOADS

The default editor we include does Markdown and is 
called MarkItUp.

It has a very quick, simple image and file upload script 
which grabs the file uses the Perch API to add it as 

content



THE PERCH API HAS TWO 
POSSIBLE ENTRY POINTS



ONE DESIGNED FOR ON-PAGE USE AS WEB PAGES ARE 
RENDERED

> light, fast, does as little work as possible 
> ‘runtime’



ONE DESIGNED FOR CONTROL PANEL OPERATIONS

> more complex, richer, does far more to assist but uses 
more resources 

> ‘admin’
> checks authentication
> checks authentication
> checks authentication



CHECKS AUTHENTICATION



THE MARKITUP UPLOAD 
SCRIPT WAS USING THE 
RUNTIME ENTRY POINT



> should have been using the admin entry point
> files could be uploaded without first checking that the 

user was authenticated 



ANYTHING COULD POST A FILE TO THE SCRIPT
AND IT WOULD UPLOAD IT…

… AND HELPFULLY GET A RESPONSE WITH THE URL TO THE UPLOADED FILE. JEEZ.



BUT WE’RE NOT 
COMPLETELY DAFT



All uploads are processed through a central clearing 
house that does basics like checking mime types and file 

extensions

You can’t upload a file to Perch if it has a file extension 
with ‘php’ in it (.php, .php3, .php5). 

They get saved as .php.txt



THIS HELPS TO ADDRESS THE SECOND PART OF THE ISSUE

THEY CAN UPLOAD THE FILE, BUT IT 
WON’T EXECUTE BECAUSE WE’VE 
DEFUSED THE FILE EXTENSION



LOOKING AT MY LOG FILES I COULD SEE THIS IN ACTION

webshell.php > webshell.php.txt

webshell.php5 > webshell.php5.txt



THE DAMAGE WAS:

1. Anyone can upload files to your website (bad!)
2. But they could upload and execute scripts (phew!)



LOOKING BACK THROUGH SOURCE CONTROL,

THIS PROBLEM HAD 
EXISTED FOR 6 YEARS



> Apart from this one guy, no one seemed to have found it
> I’d missed it in dozens of code reviews



SO...

> We figured the best course of action was to fix it 
swiftly and move on without drawing specific attention 

to it.
> Entry in the change log said: 

Fixes bugs in MarkItUp editor



TIME PASSES



A FEW WEEKS LATER WE GOT AN EMAIL 
FROM SOMEONE CLAIMING THEIR PERCH 

SITE HAD BEEN HACKED



We get these from time to time - it’s always something 
else on the server, or the server itself



Except then we got another with the same symptoms 



and another, but with more information. A webshell had 
been uploaded to the Perch resources folder with 

a .phtml extension.



.phtml



THIS WAS A NEW ONE ON ME
I HAD NO IDEA IT WAS USED FOR PHP



.phtml WAS THE FILE EXTENSION FOR

PHP 2



.phtml FILES COULD BE UPLOADED WITHOUT BEING DEFUSED

which was no big deal because we don’t have our web 
servers configured to run random file extensions we’ve 

never heard of. So no problem.

… but wait.



SOME OF OUR CUSTOMERS 
USE REALLY TERRIBLE 

HOSTING



WHICH IS BADLY CONFIGURED
AND MIGHT BE EXPECTING PHP 2 FILES 

TO BE UPLOADED
CRAP



THIS PUT US IN AN ODD 
SITUATION



> a bug in the software was being exploited
> but we’d already fixed it weeks ago

> but customers weren’t updating their software so they 
were still vulnerable 



THE VENN DIAGRAM OF CUSTOMERS ON 
BAD HOSTING AND CUSTOMERS 
UNLIKELY TO APPLY SOFTWARE 

UPDATES IS ALMOST A PERFECT CIRCLE



EVEN IF WE MADE A LOT OF NOISE 
ABOUT THIS, WE POSSIBLY WOULDN’T 
EVEN REACH THE PEOPLE AFFECTED, 

AND THEY MIGHT NOT BE IN A POSITION 
TO DO ANYTHING



WE HAD CUSTOMERS ON VERY OLD VERSIONS OF THE SOFTWARE

SOMETIMES UP TO 4 OR 5 YEARS OLD.
UPDATING TO THE CURRENT VERSION WOULD BE A CHARGEABLE PROJECT THAT WOULD REQUIRE 

PLANNING AND SCHEDULING.



SO WHAT DO YOU DO?



YOU MAKE 79 INDIVIDUAL 
PATCH FILES



We produced a drop-in replacement file for 79 previous 
releases of Perch

Updating a site was a case of finding your version, 
downloading the patch, uploading it to your site

Guaranteed to change nothing else but patching the bug



This was important as it needed to be safe to do to a live 
site

If anything needed testing, it would need time scheduling 
and it wouldn’t get done



We emailed customers and stressed that there was an 
important security update that needed applying straight 

away



DOWNSIDES

> Generating 79 patches is laborious
> We have no way to easily see if a site is patched

> That one file doesn’t affect the part of the app that 
reports its version number

> (We could tackle this various ways if it became and 
issue)



UPSIDES

> A easy fix gave customers confidence that we were on 
top of the problem

> A quick and safe-to-apply update meant that 
customers actually updated

> …Or enough updated that it wasn’t worthwhile 
attackers to continue to waste energy on



WHAT WE LEARNED



1. TAKE MINOR SECURITY BUGS 
SERIOUSLY

AS THEY CAN OPEN THE DOOR TO MAJOR ONES



 2. MAKE IT REALLY EASY
IF YOU NEED PEOPLE TO UPDATE, ELSE THEY’LL PUT IT OFF



 3. FINDING SERIOUS BUGS IN YOUR 
OWN CODE MAKES YOU FEEL REALLY 

BAD
BUT THAT’S OK, YOU SHOULD FEEL BAD.



THANKS!
JOIND.IN/TALK/8062B

@DREWM


