
OSD-2 & XAM

Erik Riedel
Seagate Technology
May 2007

Intelligent Storage, May 2007

OSD-1 Commands

Basic Protocol
• READ
• WRITE
• CREATE
• REMOVE
• GET ATTR
• SET ATTR

Specialized
• FORMAT OSD
• APPEND – write w/o offset
• CREATE & WRITE – save msg
• FLUSH – force to media
• FLUSH OSD – device-wide
• LIST – recovery of objects

Security
• Authorization – each request
• Integrity – for args & data
• SET KEY
• SET MASTER KEY

Groups
• CREATE COLLECTION
• REMOVE COLLECTION
• LIST COLLECTION
• FLUSH COLLECTION

Management
• CREATE PARTITION
• REMOVE PARTITION
• FLUSH PARTITION
• PERFORM SCSI COMMAND
• PERFORM TASK MGMT

very basic

shared
secrets

space mgmt

attributes
• timestamps
• vendor-specific

• opaque
• shared

OSD-1 r10, as ratified in September 2004

Intelligent Storage, May 2007

Status of OSD-2 Standard

Standard OSD-1 r10 for Project T10/1355-D (v1) ratified by ANSI
in September 2004 after five years of SNIA effort
Draft OSD-2 r1 is out as of January 2007

• Currently being reviewed (take a look, send comments!)
SNIA TWG working on v2 features

• Richer collections – multi-object operations [in OSD-2 r1]
• Snapshots – managed on-device [proposal]
• Extended exception handling and recovery [proposal]
• Additional security support [proposal]
• Additional features (reservations, CLEAR, PUNCH) [proposal]
• Mapping of XAM onto OSD [ongoing w/ FCAS TWG]
• Quality of Service attributes [discussion]
• Device-to-device communication [discussion]

Expect OSD-2 r2 in August/September 2007

Intelligent Storage, May 2007

OSD-2 Richer Collections

Current (OSD-1) definition is preserved
• Two extensions are backward compatible

Stronger LIST and LIST COLLECTION Commands
• Return some member object attributes along with each OID
• Similar to READDIRPLUS in NFSv3

Multi-object operations
• Execute a single command on multiple objects

- Simplicity and performance
• Use of “cloned” collections for status of multi-object operations
• QUERY – search attributes, returns list of matching objects
• REMOVE MEMBER OBJECTS – bulk remove
• SET MEMBER ATTRIBUTES – bulk attribute update
• GET MEMBER ATTRIBUTES – bulk attribute retrieval

Intelligent Storage, May 2007

OSD-2 Exception Management

Media error handling – fencing, error maps, recovery
• Report object-level errors, enable hosts or controllers to recover

Atomicity & Isolation – reported by devices
• Atomicity – complete an entire write or do not commit any data

- Atomicity can be guaranteed on data, attributes or both
- Reported using atomicity sizes: A, D, and C- limits
- (limits may be zero)

• Isolation – not interleaving overlapping reads/writes
- strong (per command); weak (per phase); none

File system check (OSD_FSCK) – externally-directed recovery
Boot epoch – updated on device reboot

• Prevents clients from performing commands on corrupted data
• Device-level attribute encoded into each capability, can be set by file

manager and may be incremented on device reboot

Intelligent Storage, May 2007

OSD-2 Snapshots

Snapshots are point-in-time copies of partitions
Requires two credentials: one for source, one for destination
SNAPSHOT CREATE

• Creates a copy of the partition object and copies the content of the
source partition to the newly created partition (snapshot)

• Either full copy (byte-by-byte) or COW are possible
DIFF READ

• Compares two objects
Snapshot chains handled via newly defined attributes

• Forward/backward pointers
• Destination pointers

COPY/CLONE can be applied to individual objects
• Used to create cloned collections for multi-object operations

Intelligent Storage, May 2007

Additional Changes in OSD-2

Extended Collections
Exception Management
Snapshots
Security

• Support extended collections and snapshots, including multi-object capabilities
Miscellaneous proposals

• FC & SAS issue resolution with transfer of unused bytes
• Alignment issue with Attribute Lists
• 64-bit CDB Alignment issue
• Read-past-end-of-object semantics
• Setting attribute without data buffer
• Reservations
• Range-based FLUSH
• CLEAR & PUNCH commands

XAM over OSD

Intelligent Storage, May 2007

eXtensible Access Method (XAM) Goals

Compliance
• Integrated record retention and disposition metadata

Standardized ILM (Information Lifecycle Management)
• Extensible metadata allows for external data classification and annotation
• Standardized ILM policies and ILM practices, managed by systems

Universal access to reference data
• Application independent and long-term storage and retrieval
• Application independent query interface

Standards-based interoperability
• XAM-compliant apps work with any XAM storage systems from any vendor
• Rich metadata allows multiple applications to share information
• Information can be easily migrated among XAM systems

 Driven by application vendors, analysts, ecosystem providers, and
customers

See SNIA tutorial “Green Eggs and XAM”,
April 2007 for additional details

Intelligent Storage, May 2007

XAM History

Q4 2004 – IBM and EMC
formulate a joint vision and
begin work on a proposal

early Q3 2005 – v1.0 of XAM
Spec available, HP, HDS, Sun
endorse XAM, join XAM Team

Q4 2005 – XAM Team donates
v1.2 of XAM Spec to SNIA;
Donation accepted, placed
under control of FCAS TWG

mid Q3 2005 – XAM Team presents
v1.1 to a select set of application ISVs,
receives encouraging feedback

Today – FCAS TWG working
on official API specification

Q2 2006 – FCAS TWG counts
>30 member companies,
technical work in full progress

Intelligent Storage, May 2007

XAM Status
FCAS Technical Work Group (TWG)

• V0.6 XAM Specification – just released (11 May)
- open to feedback from SNIA members; available to public RSN

• V0.9 – targeted for September 2007
• V1.0 – targeted for December 2007 (previously October 2007)

XAM SDK Technical Work Group (TWG)
• Technical group recently formed to develop XAM reference software
• Currently 18 members (6 companies/institutions)
• Free to join, requires companies to sign the new SNIA IP Policy
• Current work items are: XAM Library and Reference VIM (on a FS)
• OSD VIM is proposed as a work item and currently being voted on

XAM Initiative
• A set of companies promoting development of XAM software
• Determines the priorities of the XAM SDK TWG
• Fee-based membership to support development activities

Intelligent Storage, May 2007

XAM Architecture (1)

An application uses the libxam.dll to
‘connect’ to a specified XSystem.

• A single application may connect to
multiple XSystems simultaneously

• Multiple applications may connect to a
single XSystem simultaneously

An XSystem is not identical to a vendor’s
“storage box”, but a logical abstraction
which should be viewed as ‘bag of
storage’.
The application may be required to
authenticate at the time the connection to
an XSystem is established.
The application uses libxam.dll to
store/retrieve “content objects” to/from
the XSystem.
These “content objects” are bundles of
data and metadata, and are called XSets.

Intelligent Storage, May 2007

CAS with OSD

LAN

Hosts

Archive Catalog

OSD
Controller

OSD
Drives

GigE/App-specific

SAS/OSD

GigE/OSD

Applications use XAM library, XAM VIM
translates to OSD protocol and attributes,
any OSD device can be a back-end; CAS
doesn’t have to have a file system inside

Archive
Application

XAM library

Security Manager

CAS/XAM replaces “top” of
file system, OSD replaces

“bottom” of file system

Intelligent Storage, May 2007

Scalable NAS with OSD

LAN

Hosts

File Manager

OSD
Controller

Security Manager
pNFS

SAS/OSD

OSD

IETF pNFS shown here;
proprietary alternatives: Lustre/OST
or Panasas DirectFLOW

MDS protocol

Intelligent Storage, May 2007

XAM Architecture (2)
3-levels of objects (hierarchy)

• XAM Library: top level object for the XAM API library
- Contains methods to get and set fields describing

the configuration of the XAM system
- Acts as a factory of XSystems

• XSystem: object that abstracts the connection
between application and storage systems
- Encapsulates any resource management

associated with the connection
- Contains methods used to authenticate operations
- Acts as a virtual storage system, partitioning the

content
• XSet: object that contains application/user data and

metadata
- Has a globally unique identifier, called XUID (80

bytes)
Each level of XAM abstraction (XAM Library, XSystem,
XSet) contains “fields” (of type “property” or “xstream”)

XAM Library

XSystem

XSet XUID

XRI

 Properties
 Xstreams

Intelligent Storage, May 2007

XAM Architecture (3)
Two types of Fields:

• Properties
- “Simple” Types (Boolean, Uint64, Float64, String,

DateTime, XUID)
- Type checked/enforced by Storage System
- Manipulated via “Property Get/Set” Methods

• Streams
- Bytestreams, bound in Length
- Type assumed to be a valid MIME-type, but not

checked/enforced by Storage System
- Manipulated via Posix-style I/O Methods (e.g. open, read,

write, close)

Each Field Has Four Basic Attributes:
• Type – stype for Properties, any other MIME-type for

streams
• Length – The actual size of the field’s value
• Readonly – Flag indicating whether field is modifiable

by applications
• Fixed – Flag indicating whether field is Fixed/Variable

content
• Manipulated via “Attribute Get/Set” methods

XAM Library

XSystem

XSet XUID

XRI

 Properties
 Xstreams

Intelligent Storage, May 2007

U1

User
Data

U1

User
Data

U1

User
Data

U1

User
Data

C2

List of
member
Objects

C1

List of
member
Objects

P1

XAM to OSD Recommended Mapping
Option 1

•XSETs are mapped to collection objects
•Properties are mapped to attribute pages
•Xstreams are mapped to user objects
•XAM names are stored as OSD attributes

•OSD provides ways to iterate through these fields
•Systems may use external objects for quick XAM name
to OID mappings

 Properties
 Xstreams

XAM Library

XSystem

XSet XUID

XRI

Intelligent Storage, May 2007

U1

User
Data

U1

User
Data

U1

User
Data

U1

User
Data

C2

List of
member
Objects

C1

List of
member
Objects

P1

XAM to OSD Recommended Mapping
Option 2

•XSETs are mapped to collection objects
•Properties are mapped to user pages
•Xstreams are mapped to user objects
•XAM names are stored as OSD attributes

•OSD provides ways to iterate through these fields
•Systems may use external objects for quick XAM name
to OID mappings

 Properties
 Xstreams

XAM Library

XSystem

XSet XUID

XRI

Intelligent Storage, May 2007

Ongoing Work

XAM Field Attributes
• How are they mapped to OSD attributes

- Probably define new OSD attributes
- (user-defined vs. standards-defined)

Mapping of XAM methods to OSD commands
Mapping of default fields (Xstreams, properties) to OSD
Management Policies

• Retention, deletion, storage
Jobs

• Submit and halt
• Query processing

- Possible overlap with OSD-2 QUERY command for level 1 queries

Intelligent Storage, May 2007

Roadmap

XAM to OSD Mapping – ongoing work
- Basic object mapping is done, but a lot more details to go…

Plan to have a complete document in Summer 2007
- Available to the general public in the form of a White Paper

and Best Practices document
- Joint FCAS and OSD group work

Demonstrate a prototype implementation among group
of OSD partners once XAM reference is available

Backup Slides

Strong LIST
(COLLECTION) and
Multi-Object Operations
in OSD-2

Intelligent Storage, May 2007

Strong LIST and LIST COLLECTION

–Idea: Return some member object attributes along with
each OID
–Mechanism:

- A 1-bit field called “LIST ATTR” is added to CDB
- When this bit is set, clients can request member object

attributes via the “Get and set attributes parameters” field
• Just like they request regular object attributes
• OSD uses attribute page numbers to differentiate between

container object and member object attributes
- OSD returns requested member object attributes in the

“command data or parameter data segment” of the data-in
buffer alongside the OIDs

Intelligent Storage, May 2007

Multi-Object Operations (1)
–Idea: Execute a single command on multiple objects

- Simplicity
- Performance

–Mechanism:
- Can only be issued to “cloned” collection objects

• Exception for REMOVE MEMBER OBJECT command
- Operations can be done one at a time or in parallel

• No order assumed
- As objects are operated on, they are removed from the collection

• At any point, the collection contains only those objects that have not been
operated on, yet.

• A new attribute in Collection Information Attributes Page will be defined to
store the number of user objects in the collection to help track progress

- Command returns when the whole operation is completed or an error
is detected
• Might be a long time …

Intelligent Storage, May 2007

Multi-object Operations (2)

–Error Recovery: if a MO operation fails in the middle for any
reason, OSD will

- Issue no more sub-commands as part of the MO command,
- Complete any sub-commands that are currently in-flight,
- Fence any objects that have been detected as damaged

(possibly multiple objects),
- Return an error code for the first damaged object

–A client can re-issue the same command after damaged
objects have been fixed

- Operation will resume and only those objects that have not
been operated before will be operated on

–If an ABORT TASK is received during the MO operation,
OSD will ensure objects are left at a stable state or fenced

Intelligent Storage, May 2007

Multi-object Operations (3)

–Multi-object operations defined:
• QUERY
• REMOVE MEMBER OBJECTS
• SET MEMBER ATTRIBUTES
• GET MEMBER ATTRIBUTES

Intelligent Storage, May 2007

Multi-object Operations (4)
QUERY Command
–Idea: provide a search mechanism for OSD based on
attributes

- Upon receipt of a QUERY command, OSD returns the list of
all objects whose attributes match the specified criteria

- E.g., List all objects that were created within a certain time
range

–Mechanism:
- Similar to LIST COLLECTION command
- Requested attribute values are specified in the modified “Get

and set attributes parameters” field as follows:
• Attribute page number
• Attribute number
• Minimum value desired
• Maximum value desired

Intelligent Storage, May 2007

–Idea: multi-object version of the REMOVE
command
–Member objects are removed, but not the collection
object
–Unlike other MO operations, can be issued to a
regular collection object

Multi-object Operations (5)
REMOVE MEMBER OBJECTS Command

Intelligent Storage, May 2007

Multi-object Operations (6)
SET MEMBER ATTRIBUTES Command

–Idea: multi-object version of SET ATTRIBUTES
command

–Same attribute values are stored on all the member
objects

–Attributes are specified in the “Get and set
attributes parameters” field

- OSD uses attribute page numbers to differentiate
between container object and member object attributes

Intelligent Storage, May 2007

Multi-object Operations (7)
GET MEMBER ATTRIBUTES Command

–Idea: multi-object version of GET ATTRIBUTES
command

–Similar to strong LIST but provides total
randomness

–Attributes are specified in the “Get and set
attributes parameters” field

- OSD uses attribute page numbers to differentiate
between container object and member object attributes

Miscellaneous
Proposals Approved for
OSD-2

Intelligent Storage, May 2007

Alignment Issue with Attribute Lists

Courtesy of Todd Pisek

Intelligent Storage, May 2007

64-bit CDB Alignment Issue

–There are several 64-bit fields in the
CDB that are not aligned at 8 byte
boundaries. On a 64-bit Sun
SPARC, this is very inconvenient,
since attempting to access these
fields as 64 bit values will cause an
address fault. They have to pull the
fields out 32 bits at a time.

–The CDB could easily be
rearranged (by moving a reserved
field) so that all 64 bit values fall on 8
byte boundaries.

APPEND:
- LENGTH field (offset: 36)

CREATE AND WRITE:
- LENGTH field (offset: 36)
- STARTING BYTE ADDRESS field (offset: 44)

FORMAT OSD:
- FORMATTED CAPACITY field (offset: 36)

LIST:
- ALLOCATION LENGTH field (offset: 36)
- INITIAL OBJECT_ID field (offset: 44)

LIST COLLECTION:
- ALLOCATION LENGTH field (offset: 36)
- INITIAL OBJECT_ID field (offset: 44)

PERFORM TASK MANAGEMENT FUNCTION:
- TASK TAG field (offset: 44) (variable

length?)
READ:

- LENGTH field (offset: 36)
- STARTING BYTE ADDRESS field (offset: 44)

WRITE:
- LENGTH field (offset: 36)
- STARTING BYTE ADDRESS field (offset: 44)

Intelligent Storage, May 2007

FC & SAS Issues Resolved
–Several requirements in the SCSI OSD standard conflict with the
FCP and SAS transport standards.

• Fill bytes issue: With the transfer length of buffer segments in bytes, fill
bytes may be needed at the end of each segment transfer.

- In both FCP and SAS, fill bytes are only allowed on the last frame
(highest offset) in each direction per command.

• Buffer gaps issue: Unused bytes are not transferred.
- In the SCSI architecture, modify data pointer is required to support

any out of order transfers.
- FCP requires all bytes in the Data-Out and Data-In buffers be

transferred.
• Modify data pointers are optional but not widely supported.
• There is currently a proposal to remove modify data pointers from the

standard.
- SAS requires the offset of each frame be the sum of the data

length and the data offset of the previous frame.
• Modify data pointers are not supported.

–Solution: allow unused bytes to be transferred.

Intelligent Storage, May 2007

Range-based FLUSH

–Purpose:
- Update the current FLUSH command to enable clients to

specify a range of bytes they wish to flush to permanent
storage (useful for large objects).

–Mechanism:
- Modify the CDB to include the following fields:

• Use bytes 32-39 for LENGTH
• Use bytes 40-47 for STARTING BYTE ADDRESS

- Define a new value for FLUSH SCOPE field (Table 58 in OSD-
2 r1)
• 00b: User object data and attributes
• 01b: User object attributes only
• 10b: User object data range and attributes
• 11b: Reserved

Intelligent Storage, May 2007

CLEAR Command

–Clear is a specialized write operation in which a
range in the object content needs to become all ‘0’s.

- Purpose: to efficiently make a ‘0’-filled hole in an object
(sparse objects)

- OSD should support this command, now that it manages
the block allocation, to support file clear effectively.

–Mechanism:
- Define a new CDB for CLEAR that is very similar to the

WRITE CDB (new service action code and no user data
in the data-out buffer)

- Can probably use WRITE permission bit, no need to
define a new one.

Intelligent Storage, May 2007

PUNCH Command

–PUNCH is a specialized write operation similar to CLEAR
only that it “zips up” the object to eliminate the hole
completely.

- For an object of 1024 bytes, if 256 bytes at offset 256 are
punched, the new object will have 768 bytes and the bytes
formerly at offset 512-1023 are now at 256-767.

- This is a logical companion to clear.
- Also called “CUT”.
- Purpose: to efficiently remove a section of an object

–Mechanism:
- Define a new CDB for PUNCH that is very similar to the

WRITE CDB (new service action code and no user data in the
data-out buffer)

- Can probably use WRITE permission bit, no need to define a
new one.

Intelligent Storage, May 2007

Set One Attribute without Data Buffer

Intelligent Storage, May 2007

Read Past End of Object

Intelligent Storage, May 2007

Reservations

Security Related
Changes in OSD-2

Intelligent Storage, May 2007

Boot Epoch
–What is boot epoch?

- Associated with the OSD
- Settable by security admin to an arbitrary value
- May be incremented by target on reboot

• A cyclic value
- Role: lock out client actions on OSD

–2-byte integer, included in capability
- Must match value of attribute in root object

–Root security/policy attribute
- Settable

–Enforcement
- Capability boot epoch must equal root attribute value
- Zero value implies ‘bypass’

Intelligent Storage, May 2007

Changes to Capability

Capability Format – more formats
Key version x 2
Object created time x 2
Object type x 2
[Object descriptor, Object descriptor type] x 2
Permissions

• Duplicate bit vector
• More bits for new operations

Integrity value calculation, extended to K1 and K2

Obj DescriptorExpiry
Time Audit Disc Obj Creation timePermissionsSec

Info Obj Type

capability

Format

Extends by
32 bytes

doubled

Key
version

doubled

Intelligent Storage, May 2007

Extending integrity value calculation

Integrity value calculation extended to two keys
K1 – key of source partition
K2 – key of destination partition
Goal: Capability key depending on K1 AND K2

temp_key = HMAC(K1, capability)

capability_key = HMAC(K2, temp_key)

command_integrity_value = HMAC(capability_key, CDB)

Intelligent Storage, May 2007

Range Capabilities

Objective
• Restrict capability to a given range within the object

Two additional fields (8 bytes each)
• STARTING_BYTE_OFFSET
• LENGTH

Applicable for user-object and the following commands:
• Create_and_write, Write, Read, Append

Enforcement
• CDB range must be within the capability range
• Appended data should not exceed capability range

Intelligent Storage, May 2007

Capabilities for Specific Attributes

Support finer grain protection over attributes
• Specify in capability which attributes it protects

Assumption:
• Small # of subsets of attributes to protect
• Subsets are relatively static

Mechanism
• Define a user-defined page P
• Specify the page number P in a new capability field

- ALLOWED_ATTR_PAGE
• P is a list of [attr_page, attr_number]

- Allow syntax for [attr_page, *]

Enforcement
• All attributes accessed by command must be listed in the page

Exception Management

Intelligent Storage, May 2007

Exception Management
Atomicity

–Atomicity is roughly the guarantee that all of a command’s effects are either
completely committed w/in the OSD or none of a commands effects are seen within
the OSD. In other words;

- either all data is written or no data is written
- either all attributes are updated or no attributes are updated

–Atomicity can occur on data, attributes or both
- Controlled by atomicity size

• D-limit: maximum amount of data that is guaranteed to be written atomically
• A-limit: maximum amount of user-settable attributes that are guaranteed to be written

atomically
• C-limit: maximum amount of data PLUS user-settable attributes that are guaranteed to be

written atomically
- OSD MUST implement D-, A- and C-limits, but those limits may be ZERO

–What about OSD maintained (i.e. system-settable only) attributes?
- These MUST be maintained atomically by the OSD and are not considered in the D-, A-,

or C- limits
- e.g., timestamps, capacity_used,

–What about single user-settable attributes?
- Is it possible for a setattr on a single attribute to be non-atomic?
- Yes, it is possible for it to be non-atomic with respect to system-settable attributes if the

A-limit = 0.

Intelligent Storage, May 2007

Exception Management
Isolation

– Changes made by one operation are not visible to other
simultaneous operations on the system until its completion

- Avoids data from two writes becoming intermingled
- Avoids attributes from two setattr becoming intermingled

– Possible solutions
1) Strong isolation – Isolate between commands (only needs to be

done on a per-object basis)
2) Weak isolation – Isolate between command phases (e.g., no two

commands in the data-phase can modify an object at the same
time)

– Can be relaxed by implementation if data regions are non overlapping
3) No isolation

Intelligent Storage, May 2007

Exception Management
Misc.

–New Command: OSD FSCK
- To fix FS issues that cannot be fixed by outside world

–New Command: READ MAP
- Returns a map of the object indicating DATA, DAMAGED,

and HOLE sections of the object.

–Media Error Handling
- Damage discovery, handling, and reporting

